Three-Mode Approximation of Symmetrical Triple-Square Wells
American Journal of Modern Physics
Volume 3, Issue 2, March 2014, Pages: 113-117
Received: Mar. 4, 2014; Accepted: Apr. 11, 2014; Published: Apr. 20, 2014
Views 3292      Downloads 237
XinJian Liu, Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan, China
WeiDong Li, Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan, China
Article Tools
Follow on us
One transformation, analogy to two mode approximation, is presented for triple-square wells. The energy splitting is determined by the strength of the tunneling coupling between nearest neighbor wells, while the next-nearest neighbor tunneling coupling plays crucial role to the invariant first excited state with the maximum entanglement states for the far separated square-wells
Symmetrical Triple-Square Wells, Three-Mode Approximation, Energy Spectrum, Transformation
To cite this article
XinJian Liu, WeiDong Li, Three-Mode Approximation of Symmetrical Triple-Square Wells, American Journal of Modern Physics. Vol. 3, No. 2, 2014, pp. 113-117. doi: 10.11648/j.ajmp.20140302.20
Andrew D. Greentree, Jared H. Cole, A. R. Hamilton, and Lloyd C. L. Hollenberg, Coherent electronic transfer in quantum dot systems using adiabatic passage, Phys. Rev. B. 70,235317 (2004)
J. H. Cole, A. D. Greentree, L. C. L. Hollenbeg, and S. Das. Sarma, Spatial adiabatic passage in a realistic triple well structure, Pyhs. Rev. B. 77, 235418 (2008)
Xin-You Lu and Jing Wu, Three-mode entanglement viatunneling-induced interference in a coupled triple-semiconductor quantum-well structure, Pyhs. Rev. A. 82, 012323(2010)
Jero Me Rech and Stefan Kehrein, Effect of Measurement Backaction on Adiabatic Coherent Electron Transport, Phys. Rev. Lett. 106,136808 (2011)
B. Liu, L. B. Fu, S. P. Yang, and, J. Liu, Josephson oscillation and transition to self-trapping for Bose-Einstein condensates in a triple-well trap, Phys. Rev. A.75, 033601 (2007)
WangHai-Lei, YangShi-Ping, Switch effect of Bose-Einstein condensates in a triple-well potential, Acta. Phys. Sin. 57, 3290(2008)
Rosario Paredes, Tunneling of ultracold Bose gases in multiple wells, Phys. Rev. A. 73, 033616 (2006)
Thiago F Viscondi, and, K Furuya, Dynamics of Bose-Einstein condensate in a symmetric triple-well trap,J. Phys.A.44,1753 (2011)
Alexej I. Streltsov, Kaspar Sakmann, Ofire. Alon and Lorenz. S. Cederbaum, Accurate multi-boson long-time dynamics in triple-well periodic traps, Phys. Rev. A. 83, 043604 (2011)
T. Lahaye, T. Pfau, and, L. Santos, Mesoscopic Ensembles of Polar Bosons in Triple-Well Potentials, Phys. Rev. Lett. 104,170404 (2010)
A. Smerzi, S. Fantoni, S. Giovanazzi, and,S. R. Shenoy, Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates,Phys. Rev. Lett. 79,4950 (1997)
WeiDong Li, Stationary solutions of Gross-Pitaevskii equations in a double square well, Phys. Rev. A. 74, 063612 (2006)
XinYan Jia, WeiDong Li, and, J. Q. Liang, Nonlinear correction to the boson Josephson-junction model, Phys. Rev.A. 78, 023613 (2008)
Ping-Zhang, Xian-Geng Zhao, Localization and entanglement of two interacting electrons in a double quantum dot, J. Phys. Condens. Matter.13, 8389 (2001)
S. J. Van. Enk, Pyhs. Single-particle entanglement, Rev. A. 72, 064306 (2005)
Marcelo O. Terra Cunha, Jacob A Dunningham and Vlatko Vedral, Proc. R. Soc. A. 463, 2277 (2007)
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186