Thermodynamics Properties of a System with Finite Heavy Mass Nuclei
American Journal of Modern Physics
Volume 3, Issue 6, November 2014, Pages: 240-244
Received: Oct. 22, 2014; Accepted: Nov. 13, 2014; Published: Nov. 20, 2014
Views 3170      Downloads 155
Boniface Otieno Ndinya, Department of Physics and Material sciences, Maseno University, P. O. Box 333, Maseno-40105, Kenya
Alex Okello, Department of Physics, Makerere University, P. O. Box 7062, Kampala, Uganda
Article Tools
Follow on us
The thermodynamics property of finite heavy mass nuclei, with the number of protons greater than the number of neutron is investigated. The core of the nucleus contains the neutron-proton pair that interacts harmonically; the excess neutron(s) reside(s) on the surface of the nucleus and introduce the anharmonic effect. The total energy is evaluated using ladder operator method and the quantum mechanical statistical expression of energy. The total energy, heat capacity and entropy are found to depend on the occupation number of states and the number of excess neutrons. At temperature near absolute zero the specific heat and entropy are lowest because a decreases in temperature leads to a decrease in particle interaction and energy.
Anharmonic Oscillator, Transition Temperature, Heat Capacity and Entropy
To cite this article
Boniface Otieno Ndinya, Alex Okello, Thermodynamics Properties of a System with Finite Heavy Mass Nuclei, American Journal of Modern Physics. Vol. 3, No. 6, 2014, pp. 240-244. doi: 10.11648/j.ajmp.20140306.16
Civitarese, O, Reboiro, M and Vogel P. (1997). Neutron-proton pairing in the BCS approch. Physical Review, C 56 , 1840-1843.
Civitarese, O and Reboiro M (1997). Proton-neutron pairing effects in medium and heavy mass nuclei. Physical Review C, 56 , 1179-1182.
Engel, J, Pittel, S, Stoitsov, M, Vogel, P and Dukelsky, J (1997). Neutron-proton correlations in an exactly solvable model. Physical Review C, 55, 1781-1788.
Kanada-En'yo, Y, Hinohara, N, Suhara, T, and Schuck, P. (2009). Dineutron correlations in quasi-two-dimensional systems in a simplified model, and possible relation to neutron-rich nuclei. Physical Review C, 79, 054305-054322.
Pitaevski, L. and Stringari S. (1998). Theory of Bose-Einstein condensation in trapped gases. Reviews of modern Physics, Vol. 71, 463-512.
Xue-Xi, Y., Hai-Jun, W. and Chang-Pu, S. (1998). Bose-Einstein condensation in Harmonic oscillator potential, Physica Scripta, Vol. 57, 324-326.
Haldar, S. K., Chakrabarti, B., Bhattacharyya, S. and Das, T. K. (2014). Condensate fraction and critical temperature of interacting Bose gas in anharmonic trap. arXiv preprint arXiv:1403.2717.
Singh, K. K. (1967). Stastical Mechanics of a system of interacting Bosons. Physica , 34, 285-309.
Shigeo, N. (1972). A thermodynamic Perturbation theory of the Anharmonic Oscillator I. Progress in Theoretical Physics , 48 (2), 407-432.
Naya Shigeo and Siegel Armand. (1972). A thermodynamic Perturbation theory of Anharmonic Oscillator II. Progrss in Theoretical Physics , 48 (3), 783-807.
Khanna K .M, Kanyeki G. F, Rotich .S K, Torongey P. K and Ameka S. E. (2010). Anharmonic perturbation of neutron-proton pair by unpaired neutrons in heavy finite nuclei. Indian Jouurnal of Pure and Applied Physics , 7-15.
Sakwa, T.W, Ayodo, Y.K, Sarai, A, Khanna K.M, Rapanda B.W and Mukoya, A.K. (2013). Thermodynamics of Grand-Canoniacal Binary System at low temperatures. International Journal of Physics and Mathematical Sciences , 3 (2), 87-98.
Walter Greiner, Ludwig Neise and Horst Stocker. (1997). Thermodynamics and Stastical Mechanics. Berlin: Springer Verlag.
Sakurai, J. J. (1994). Modern Quantum Mechanics. New York: Addision-Wesley Publishing Company.
Merzbacher, E. (1970). Quantum Mechanics. New York: John Wiley and son.
Robinett, R. W. (1997). Average values of position for the anharmonic Oscilator: Classical values versus quantum results. Am. J. Physics , 65 (3), 190-194.
Shankar, R. (1994). Principle of Quantum mechanics. New York: Plenum Press.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186