Unified Field Theory and Topology of Atom
American Journal of Modern Physics
Volume 3, Issue 6, November 2014, Pages: 247-253
Received: Oct. 5, 2014; Accepted: Oct. 9, 2014; Published: Dec. 16, 2014
Views 3943      Downloads 173
Authors
Zhiliang Cao, Wayne State University, College of Engineering,42 W Warren Ave, Detroit, USA; Shanghai Jiaotong University, School of Materials Science and Engineering,Shanghai, China
Henry Gu Cao, Northwestern University, Weinberg College of Arts and Sciences,633 Clark St, Evanston, IL 60208
Wenan Qiang, Northwestern University, Robert H Lurie Medical Research Center Room 4-123, 303 E Superior, Chicago IL 60611
Article Tools
Follow on us
Abstract
The paper "Unified Field Theory and the Configuration of Particles" opened a new chapter of physics. One of the predictions of the paper is that a proton has an octahedron shape. As Physics progresses, it focuses more on invisible particles and the unreachable grand universe as visible matter is studied theoretically and experimentally. The shape of invisible proton has great impact on the topology of atom. Electron orbits, electron binding energy, Madelung Rules, and Zeeman splitting, are associated with proton’s octahedron shape and three nuclear structural axes. An element will be chemically stable if the outmost s and p clouds have eight electrons which make atom a symmetrical cubic.
Keywords
Unified Field Theory, Quantum Field Theory, Standard Model, Zeeman Effects, Madelung Rules
To cite this article
Zhiliang Cao, Henry Gu Cao, Wenan Qiang, Unified Field Theory and Topology of Atom, American Journal of Modern Physics. Vol. 3, No. 6, 2014, pp. 247-253. doi: 10.11648/j.ajmp.20140306.18
References
[1]
Cao, Zhiliang, and Henry Gu Cao. "Unified Field Theory and the Configuration of Particles." International Journal of Physics 1.6 (2013): 151-161.
[2]
Cao, Zhiliang, and Henry Gu Cao. "Unified Field Theory and Topology of Nuclei." International Journal of Physics 2, no. 1 (2014): 15-22.
[3]
Zhiliang Cao, Henry Gu Cao. Unified Field Theory. American Journal of Modern Physics. Vol. 2, No. 6, 2013, pp. 292-298. doi: 10.11648/j.ajmp.20130206.14.
[4]
Cao, Zhiliang, and Henry Gu Cao. "Unified Field Theory and the Hierarchical Universe." International Journal of Physics 1.6 (2013): 162-170.
[5]
Cao, Zhiliang, and Henry Gu Cao. "Non-Scattering Photon Electron Interaction." Physics and Materials Chemistry 1, no. 2 (2013): 9-12.
[6]
Cao, Zhiliang, and Henry Gu Cao. "SR Equations without Constant One-Way Speed of Light." International Journal of Physics 1.5 (2013): 106-109.
[7]
Cao, Henry Gu, and Zhiliang Cao. "Drifting Clock and Lunar Cycle." International Journal of Physics 1.5 (2013): 121-127.
[8]
Cao, Zhiliang, and Henry Gu Cao. "Unified Field Theory and Foundation of Physics." International Journal of Physics 2, no. 5 (2014): 158-164.
[9]
Mehul Malik, Mohammad Mirhosseini, Martin P. J. Lavery, Jonathan Leach, Miles J. Padgett & + et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 2014, 5, doi:10.1038/ncomms4115
[10]
H. T. Yuan, M. B. Saeed, K. Morimoto, H. Shimotani, K. Nomura, R. Arita, Ch. Kloc, N. Nagaosa, Y. Tokura, and Y. Iwasa. Zeeman-Type Spin Splitting Controlled with an External Electric Field. Nat. Phys. 2013, 9, 563–569.
[11]
A. Rahimi-Iman, C. Schneider, J. Fischer, S. Holzinger, M. Amthor, S. Höfling, S. Reitzenstein, L. Worschech, M. Kamp, and A. Forchel. “Zeeman splitting and diamagnetic shift of spatially confined quantum-well exciton polaritons in an external magnetic field.” Phys. Rev. B 84, 165325 – 2011, October
[12]
D. Kekez, A. Ljubiic & B. A. Logan. An upper limit to violations of the Pauli exclusion principle. Nature 348, 224-224 doi:10.1038/348224a0 (1990)
[13]
Zoran Hadzibabic. Quantum gases: The cold reality of exclusion. Nature Physics 6, 643-644 doi:10.1038/nphys1770 (2010)
[14]
June Kinoshita. Roll Over, Wolfgang? Scientific American 258, 25-28 doi:10.1038/scientificamerican0688-25 (1988)
[15]
Tony Sudbery. Exclusion principle still intact. Nature 348, 193-194 doi:10.1038/348193a0 (1990)
[16]
R. C. Liu, B. Odom, Y. Yamamoto & S. Tarucha. Quantum interference in electron collision. Nature 391, 263-265 doi:10.1038/34611 (1998)
[17]
George Gamow. The Exclusion Principle. Scientific American 201, 74-86 doi:10.1038/scientificamerican0759-74 (1959)
[18]
B. Poirier, Chem. Phys. 370, 4 (2010).
[19]
A. Bouda, Int. J. Mod. Phys. A 18, 3347 (2003).
[20]
P. Holland, Ann. Phys. 315, 505 (2005).
[21]
P. Holland, Proc. R. Soc. London, Ser. A 461, 3659 (2005).
[22]
G. Parlant, Y.-C. Ou, K. Park, and B. Poirier, “Classical-like trajectory simulations for accurate computation of quantum reactive scattering probabilities,” Comput. Theor. Chem. (in press).
[23]
D. Babyuk and R. E. Wyatt, J. Chem. Phys. 124, 214109 (2006).
[24]
Jeremy Schiff and Bill Poirier. Quantum mechanics without wavefunctions. THE JOURNAL OF CHEMICAL PHYSICS 136, 031102 (2012)
[25]
J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, NJ, 1932).
[26]
D. Bohm, Phys. Rev. 85, 166 (1952).
[27]
P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, England, 1993).
[28]
R. E. Wyatt, Quantum Dynamics with Trajectories: Introduction to Quantum Hydrodynamics (Springer, New York, 2005).
[29]
H. Everett III, Rev. Mod. Phys. 29, 454 (1957).
[30]
M. F. González, X. Giménez, J. González, and J. M. Bofill, J. Math. Chem. 43, 350 (2008).
[31]
Oganessian, Yu. T. et al. (2002). Results from the first 249Cf+48Ca experiment. JINR Communication (JINR, Dubna). http://www.jinr.ru/publish/Preprints/2002/287(D7-2002-287)e.pdf.
[32]
Nash, Clinton S. (2005). "Atomic and Molecular Properties of Elements 112, 114, and 118". Journal of Physical Chemistry A 109 (15): 3493–3500.
[33]
K.Umemoto, S.Saito, Electronic configurations of superheavy elements,
[34]
Journal of the physical society of Japan, vol.65, no.10, 1996, p.3175-3179
[35]
Hartmut M. Pilkuhn, Relativistic Quantum Mechanics, Springer Verlag, 2003.
[36]
E.Loza, V.Vaschenko. Madelung rule violation statistics and superheavy elements electron shell prediction. http://arxiv-web3.library.cornell.edu/abs/1206.4488
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186