Impurity Binding Energyin Quantum Dots with Parabolic Confinement in the Presence of Electric Field
American Journal of Modern Physics
Volume 4, Issue 6, November 2015, Pages: 287-290
Received: Nov. 18, 2015; Accepted: Nov. 30, 2015; Published: Dec. 20, 2015
Views 3548      Downloads 66
Authors
Arnold Abramov, Kuang-Chi Institute of Advance Technology, Shenzhen, China
Zhiya Zhao, Kuang-Chi Institute of Advance Technology, Shenzhen, China
Alexander Kostikov, Donbass State Engineering Academy, Kramatorsk, Ukraine
Article Tools
Follow on us
Abstract
We present an efficient method for calculation of the impurity binding energy in a quantum dot with parabolic confinement in the presence of the electric field. The unknown wave function is expanded into a basis of one-dimensional harmonic oscillator states describing the electron's movement perpendicular to the plane of quantum well. Green's function technique used to calculate the coefficients of the expansion. Binding energy of impurity states is defined as poles of the wave function. Developed method applied to calculation of impurity binding energy for different position of impurity and the intensity of electric field.
Keywords
Quantum Dot, Electric Field, Impurity
To cite this article
Arnold Abramov, Zhiya Zhao, Alexander Kostikov, Impurity Binding Energyin Quantum Dots with Parabolic Confinement in the Presence of Electric Field, American Journal of Modern Physics. Vol. 4, No. 6, 2015, pp. 287-290. doi: 10.11648/j.ajmp.20150406.15
Copyright
Copyright © 2015 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
G. Bastard, “Hydrogenic impurity states in a quantum well: a simple model”, Phys. Rev. B, vol. 24 pp. 4714-4722, 1981.
[2]
C. Y. Ngo, S. F. Yoon, and W. J. Fan, S. J. Chua, “Effects of size and shape on electronic states of quantum dots”, Phys. Rev. B, vol. 74, pp. 245331, 2006.
[3]
Y. Turki-Ben Alia, G. Bastard, R. Bennaceur, “Ground state transition energies in biased InAs/GaAs quantum dots”, Physica E, vol. 27, pp. 67-76, 2005.
[4]
M. Willatzen, L. C. Lew Yan Voon, “Confined states in parabolic cylinder quantum dots”, Physica E, vol. 16, pp. 286-296, 2003.
[5]
S. M. Reimann, M. Manninen, “Electronic structure of quantum dots”, Rev. of Mod. Phys., vol. 74, pp. 1283-1342, 2002.
[6]
Y. Hada, M. Eto, “Electronic states in silicon quantum dot devices”, Phys. stat. sol. (c), vol. 2, pp. 3035-3038, (2005).
[7]
F. B. Pedersen, Yia-Chung Chang, “Magnetic-field effects on one- and two-hole states in parabolic quantum dots”, Phys. Rev. B, vol. 55, pp. 4580-4588, 1997.
[8]
C. Pryor, “Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band approximations”, Phys. Rev. B, vol. 57, pp. 7190-7196, 1998.
[9]
Curt A. Flory Charles B. “Musgrave and Zhiyong Zhang, Quantum dot properties in the multiband envelope-functionapproximation using boundary conditions based upon first-principles quantum calculations”, Phys. Rev. B, vol. 77, pp. 205312, 2008.
[10]
N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin. P. S. Kop’ev, and Zh. I. Alferov, “Quantum dot heterostructures: fabrication, properties, lasers (Review)”, Semiconductors, vol. 32, pp. 343-365, 1998.
[11]
G. Bastard, E. E. Mendez, L. L. Chang, L. Esaki, “Variational calculations on a quantum well in an electric field”, Phys. Rev. B, vol. 28, pp. 3241-3245, 1983.
[12]
Jian-Hui Yuan, Yan Zhang, Meng Li, Zhi-Hui Wu, Hua Mo, “Hydrogenic impurity states in a parabolic quantum dot: Hydrostatic pressure and electricfield effects”, Superlattices and Microstructures, vol. 74, pp. 1-10, (2014).
[13]
P. Jiang-Hong, L. Li-Zhe, L. Min, “Hydrogenic-Donor Impurity States in GaAs/AlxGa1−xAs Quantum Dots in the Presence of an Electric Field”, Chin. Phys. Lett., vol. 28, pp. 086201, 2011.
[14]
M. Tshipa, “The effect of confining electric potentials on binding energiesin a spheroidal quantum dot”, Indian J. Phys., vol. 86, pp. 807-812, 2012.
[15]
A. John Peter, Vemuri Lakshminarayana, “Effects of Electric Field on Electronic States in a GaAs/GaAlAs Quantum Dotwith Different Confinements”, Chin. Phys. Lett., vol. 25, pp. 3021-3024, 2008.
[16]
J.-H. Yuan, Y. Zhang, X. Guo, J. Zhang, H. Mo, “The low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field”, Physica E, vol. 68, pp. 232–238, 2015.
[17]
S. Wang, Y. Kang, X.-L. Li, “Binding energy of the ground and first few excited states of hydrogenic donor impurity in a rectangular GaAs quantum dot in the presence of electric field”, Superlattices and Microstructures, vol. 76, pp. 221–233, 2014.
[18]
N. V. Lien, N. M. Trinh, “Electric field effects on the binding energy of hydrogen impurities in quantum dots with parabolic confinements”, J. Phys.: Condens. Matter, vol. 13, pp. 2563–2571, 2001.
[19]
A. A. Abramov, “Resonant donor states in quantum well”, Mod. Phys. Lett. B, vol. 25, pp. 89-96, 2011.
[20]
A. A. Abramov, “Impurity binding energies in quantum dots with parabolic confinement”, Physica E, vol. 67, pp. 28-32, 2015.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186