An Advanced Physics of Superfluidity and Superconductivity
American Journal of Modern Physics
Volume 5, Issue 6, November 2016, Pages: 177-183
Received: Oct. 24, 2016; Accepted: Nov. 7, 2016; Published: Dec. 5, 2016
Views 3357      Downloads 131
Authors
Gilbert A. Ibitola, Department of Physical Sciences, Ondo State University of Science & Technology, Okitipupa, Nigeria
Olanrewaju Ajanaku, Department of Physical Sciences, Ondo State University of Science & Technology, Okitipupa, Nigeria
Lawrence O. Imafidon, Department of Physical Sciences, Yaba College of Technology, Yaba, Lagos, Nigeria
Article Tools
Follow on us
Abstract
This paper presents an advanced Physics of superfluidity and superconductivity. We know from Quantum Mechanics that there are two types of particles, bosons and fermions. Single states can be occupied by any number of bosons while for fermions a single state can be occupied at most by one fermion. The charged boson system is found to exhibit superfluidity: the gauge-invariant Lagrangian, coupling between the bosons and the electromagnetic gauge field. It is observed that current conservation puts constraints on current correlation. Current correlation functions and electromagnetic responses are then determined for superfluids and metals. The response function in a metallic conductor is used in obtaining its several parameters which include conductivity, dielectric constant, polarization, magnetic moment density and magnetic susceptibility. The London equation is then deduced for superconductors.
Keywords
Gauge-Invariant Lagrangian, Current Correlation, Electromagnetic Responses, London Equation, Superfluid, Metal, Superconductor, Free Electron Theory, Meissner Effect
To cite this article
Gilbert A. Ibitola, Olanrewaju Ajanaku, Lawrence O. Imafidon, An Advanced Physics of Superfluidity and Superconductivity, American Journal of Modern Physics. Vol. 5, No. 6, 2016, pp. 177-183. doi: 10.11648/j.ajmp.20160506.13
Copyright
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Caldeira, A. O. and A. J. Leggett, 1991, Phys. Rev. Lett., 54, 411.
[2]
Chaikin, P. M. and T. C. Lubensky, 2007, “Principles Of Condensed Matter Physics” (Cambridge University Press).
[3]
Chang, A. M., L. N. Pfeiffer and K. W. West, 2006, Phys. Rev. Lett. 77, 2538.
[4]
Frohlich, J. and U. M. Studer, 2003, Rev. Of Mod. Phys. 73, 1033.
[5]
Gliozzi, F., T. Regge and M. A. Virasoro, 1999, Physics Letters B 101, 876.
[6]
Haldane, F., 2002, Helv. Phys. Acta. 75, 1153.
[7]
Iso, S., D. Karabali and B. Sakita, 2002, Phys. Lett. B 306, 1267.
[8]
Jain, J. K. and S. A. Kivelson, 1998, Phys. Rev. Lett. 71, 1565.
[9]
Landau, L. D. and E. M. Lifschitz, 1985, Statistical Physics –Vol. 5 (Pergamon, London).
[10]
Ma, S. K., 1986, “Modern Theory Of critical Phenomena” (Benjamin/Cummings, Reading, MA).
[11]
Sachdev, S. and K. Park, 2007, Annals Of Physics (N.Y.) 298, 58.
[12]
Casalbuoni, R. 2011, Introduction to Quantum Field Theory, World Scientific Publishing, Singapore.
[13]
Nazarov Y. V. and J. Danon, 2013 Advanced Quantum Mechanics, Cambridge Univ. Press.
[14]
Tilley D. R. and John Tilley, 1986 Superfluidity and Superconductivity, Adam Hilger LTD, Bristol and London.
[15]
Annett J., 2004, Superconductivity, Superfluids, and Condensates (Oxford Univ. Press, New York).
[16]
Alford, M. G., S. K. Mallavarapu, A. Schmitt, S. Stetina, 2013, Phys. Rev. D87, 065001.
[17]
He L., S. Mao, P. Zhuang, 2013 Int.J.Mod.Phys. A28, 1330054.
[18]
Watanabe H., H. Murayama,2014, eprint arXiv:1402.7066.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186