The Test of Entanglement of Polarization States of a Semi-Classical Optical Parametric Oscillator
American Journal of Modern Physics
Volume 6, Issue 3, May 2017, Pages: 37-42
Received: Mar. 29, 2017; Accepted: Apr. 10, 2017; Published: May 8, 2017
Views 2216      Downloads 170
Authors
Gerald Mugaya Lisamadi, Department of Physics and Materials Science, Maseno University, Maseno, Kenya
Boniface Otieno Ndinya, Department of Physics, Masinde Muliro University of Science and Technology, Kakamega, Kenya
Joseph Akeyo Omolo, Department of Physics and Materials Science, Maseno University, Maseno, Kenya
Article Tools
Follow on us
Abstract
We study the dynamical continuous variable entanglement in a semi-classical Optical parametric oscillator (OPO). The general time evolving photon polarization state vectors arising from exact analytical solutions of Heisenberg’s equations of the system are used to obtain the photon polarization Bell state vectors. The reduced density matrices of photon polarization Bell state vectors of the semi-classical OPO produce a greater violation of CHSH Bell’s inequality beyond the Cirel’son’s inequality.
Keywords
Optical Parametric Oscillator, Bell State Vectors, Reduced Density Matrices, Entanglement
To cite this article
Gerald Mugaya Lisamadi, Boniface Otieno Ndinya, Joseph Akeyo Omolo, The Test of Entanglement of Polarization States of a Semi-Classical Optical Parametric Oscillator, American Journal of Modern Physics. Vol. 6, No. 3, 2017, pp. 37-42. doi: 10.11648/j.ajmp.20170603.11
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Bennett H. and Brassard G. (1993). “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels". Phys. Rev. Lett. 70, 1895.
[2]
Rupert U. (2004). "Quantum teleportation across the Danube". http://www.nature.com/articles/430849a/doi:10.1038/430849a. accessed on 6/7/2014.
[3]
Herbst V. and Scheidl F. (2012). "Quantum teleportation over 143 kilometers using active feed-forward". Bibcode: Nature 489.,269M. doi:10.1038/nature 11472.
[4]
Takeda T. (2014). "Deterministic quantum teleportation of photonic quantum bits by a hybrid technique". Nature 500, 315. DOI: 10. 1038/nature 12366.
[5]
Adams W. (2016). China’s Quantum Cryptography: Tales from (Quantum) Crypt. National law-review.http://www.natlawreview.com/article/china-s-quantum-cryptography-tales-quant-crypt. accessed on 5/2/2017.
[6]
Villar S. and Cassemiro N. (2005). ‘’Generation of Bright Two-Color Continuous Variable Entanglement," Phys. Rev. Lett. 95, 243603.
[7]
Villar S. and Cassemiro N. (2006). Entanglement in the above-threshold optical parametric oscillator. http://arxiv. org/pdf/quant-ph/0610208. accessed on 2/2/2015.
[8]
Su X. and Tan A. (2006). ‘’Experimental demonstration of quantum entanglement between frequency-nondegenerate optical twin beams," Opt. Lett. 31, 1133. DOI:10. 1364/OL.
[9]
Shahrokhshahi R. and Pfister O. (2012). Large-scale multipartite entanglement in the quantum optical frequency comb of a depleted-pump optical parametric oscillator. http://arxiv. org/pdf/ 1110. 6450. accessed on 12/6/2015.
[10]
Johansson R. (2014). Entangled-state generation and Bell inequality violations in nanomechanical resonators. Phys. Rev. B90, 174307.
[11]
Chakrabarti R. and Jenisha J. (2015). Quasi-Bell states in a strongly coupled qubit-oscillator system and their delocalization in the phase space. Phys. Rev. lett 88,148301.
[12]
Eberhard P. H. (1999). Violation of Bell’s inequality. Phys. Rev. A., 60, RR773.
[13]
Akeyo J. O. (2008). Revisiting non-degenerate parametric down-conversion. Pramana-journal of physics Vol. 71, No. 6 pp. 1311-1320.
[14]
Ling A. (2008). Entangled state preparation for optical quantum communication. National university of Singapore. http://www.quantumlah.org/media/thesis-alex.pdf.
[15]
Munro W. J., Nemoto K. and White A. G. (2001). The Bell inequality: a measure of entanglement. Journal of Modern Optics, Vol. 48, No. 7, 1239-1246.
[16]
Preskil J. (1998). Quantum information and computation: Lecture Notes for physics 229. California. http://www. lorentz leidenuniv.ni/quantum computers/preskill/ph.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186