American Journal of Modern Physics

| Peer-Reviewed |

Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles

Received: 24 May 2017    Accepted: 13 June 2017    Published: 17 July 2017
Views:       Downloads:

Share This Article

Abstract

This paper studies the influence of atomic number at temperature of 300 K, temperature at 5324 atoms, phase transition & crystallization at different temperatures of 300 K, 500 K, 600 K, 700 K, 1100 K after 2×105 move steps number by increasing temperature of 4×1012 K/s on microstructure, phase transition temperature, phase transition & crystallization of CuNi nanoparticle by molecular dynamics (MD) with embedded interaction Sutton-Chen and soft boundary conditions. Microstructure characteristics are analyzed through radial distribution function (RDF), energy, size, phase transition temperature (via relationship between energy and temperature), phase transition & crystallization (via radial distribution function, Etot, move step number and common neighbor analysis (CNA)). Results show that first peak position of the radial distribution function is dominant; lengths of Cu-Cu, Ni-Ni with the results of Ni-Ni consistent with simulation. At 300 K temperature, nanoparticle appears in four phases namely FCC, HCP, ICO and Amorphous, presenting the effect of atomic number, temperature and move step number on microstructure, phase transition temperature and phase transition & crystallization of CuNi nanoparticle.

DOI 10.11648/j.ajmp.20170604.14
Published in American Journal of Modern Physics (Volume 6, Issue 4, July 2017)
Page(s) 66-75
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Atomic Number, Temperature, Move Step Number, Microstructure, Transition Temperature, Crystallization, CuNi Nanoparticle, Molecular Dynamics

References
[1] R. D. S. Lisboa, C. S. Kiminami, J. Non-Cryst. Solids. 304, (2002), 36.
[2] Z. X. Wang, R. J. Wang, W. H. Wang, Mater. Lett. 60, (2005), 831.
[3] Duwez, P. E., Willens, R. H., Klement, W., Continuous series of metastable solid solutions in silver-copper alloys, J. Appl. Phys., 31, (1960), 1136-1137.
[4] Takayama, S., Glass formation and stability, J. Mater. Sci., 11: (1976), 164-185.
[5] Q. X. Pei, C. Lu, H. P. Lee, J. Phys. Condens. Matter 17, (2005), 1493.
[6] L. Hui, B. Xiufang, Z. Jingxiang, Mater. Sci. Eng. A 271, (1999), 116.
[7] H. R. Cong, X. F. Bian, J. X. Zhang, H. Li, Mater. Sci. Eng. A 326, (2002), 343.
[8] L. Qi, H. F. Zhang, Z. Q. Hu, P. K. Liaw, Phys. Lett. A 327, (2004), 506.
[9] M. Yan, J. F. Sun, J. Shen, J. Alloys Comp. 381, (2004), 86.
[10] M. Shimono, H. Onodera, Mater. Sci. Eng. 515, (2001), A 304–306.
[11] J. S. C. Jang, L. J. Chang, G. J. Chen, J. C. Huang, Intermetallics 13, (2005), 907.
[12] Y. L. Gao, J. Shen, J.F. Sun, G. Wang, D.W. Xing, H.Z. Xian, B.D. Zhou, Mater. Lett. 57 (2003) 1894.
[13] D. Caprion, H. R. Schober, J. Non-Cryst. Solids 369, (2003), 326–327.
[14] L. A. Marqués, L. Pelaz, M. Aboy, P. Lopez, J. Barbolla, Comput. Mater. Sci. 33, (2005), 92.
[15] Y. Shao, P. C. Clapp, J. A. Rifkin,Metall. Mater. Trans. A 27A, (1996), 1477.
[16] S. Erkoc, Phys. Rep. 278, (1997), 79.
[17] M. W. Finnis, J. E. Sinclair, Philos. Mag. A 50, (1984) 45.
[18] A. F. Voter, S. P. Chen, in: R. W. Siegel, J. R. Weertman, R. Sinclair (Eds.), Mat. Res. Soc. Symp. Proc., vol. 82, MRS, Pittsburgh, (1987), 175–180.
[19] A. P. Sutton, J. Chen, Philos. Mag. Lett. 61, (1990), 139.
[20] J. H. Shim, S. C. Lee, B. J. Lee, J. Y. Suh, Y. W. Cho, J. Cryst. Growth 250, (2003), 558.
[21] C. Kuiying, S. Xianwei, Z. Xiumu, L. Yiyi, Mater. Sci. Eng. A 214, (1996), 39.
[22] T. M. Brown, J. B. Adams, J. Non-Cryst. Solids 180, (1995), 275.
[23] Y Qi, T Çağin, Y Kimura, WA Goddard, Journal of computer-aided materials design 8 (2), (2001), 233-243.
[24] Saida, J., Matsushita, M., Direct observation of icosahedral cluster in Zr70Pd30 binary glassy alloy, Appl. Phys. Lett., 79: (2001), 412-414.
[25] Zetterling, F. H. M., Dzugutov, M., Formation of large-scale icosahedral clusters in a simple liquid approach- ing the glass transition, J. Non-crystalline solids, 293-295: (2001), 39-44.
[26] Harrop, J. D., Taraskin, S. N., Simdyankin, S. I. et al., Numerical structural analysis of the icosahedral glass and related structures, J. Non-crystalline Solids, (2001), 293-295: 556-561.
[27] A. P. Sutton and J. Chen, Philos. Mag. Lett. 61, (1990), 139.
[28] H. Rafii-Tabar and A. P. Sutton, Philos. Mag. Lett. 63, (1991), 217.
[29] Y Qi, T Çağın, Y Kimura, WA Goddard III, Physical review B 59 (5), (1999), 3527.
[30] Sutton, A. P., Chen, J., Long-range Finnis-Sinclair potentials, Philos, Mag. Lett., 61, (1990), 139-146.
[31] Doye, J. P. K., Wales, D. J., Global minima for transition metal clusters described by Sutton-Chen potentials, New J. Chem., 22, (1998), 733-744.
[32] H. Tsuzuki, P. S. Branicio, J. P. Rino, Computer physics communications 177 (6), (2007), 518-523.
[33] S. Kazanc, "Molecular dynamics study of pressure effect on crystallization behaviour of amorphous CuNi alloy during isothermal annealing", Physics Letters A 365, (2007) 473–477.
[34] P. R. Subramanian, D. J. Chakrabarti, D. E. Laughlin, Phase Diagrams of Binary Alloys, ASM International, Materials Park, OH, (1994).
[35] Qi, Y., Cagin, T., Kimura, Y. et al., Physical review B, 59: (1993), 527-3533.
[36] T. Cagın, G. Dereli, M. Uludogan, and M. Tomak, Physical review B 5, 59 (1999-I), 3468-3473.
[37] E. L. de León-Quiroz, D. Vázquez Obregón et al., Ieee Transactions On Magnetics, 49: (2013), 4522-4524
[38] Ramazan Oguzhan Apaydin, Burcak Ebin and Sebahattin Gurmen, Metallurgical and Materials Transactions A, 47A, (2016), 3744-3752, doi: 10.1007/s11661-016-3514-7.
Author Information
  • Faculty of Physics, Hanoi National University of Education, Hanoi, Vietnam

Cite This Article
  • APA Style

    Trong Dung Nguyen. (2017). Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles. American Journal of Modern Physics, 6(4), 66-75. https://doi.org/10.11648/j.ajmp.20170604.14

    Copy | Download

    ACS Style

    Trong Dung Nguyen. Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles. Am. J. Mod. Phys. 2017, 6(4), 66-75. doi: 10.11648/j.ajmp.20170604.14

    Copy | Download

    AMA Style

    Trong Dung Nguyen. Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles. Am J Mod Phys. 2017;6(4):66-75. doi: 10.11648/j.ajmp.20170604.14

    Copy | Download

  • @article{10.11648/j.ajmp.20170604.14,
      author = {Trong Dung Nguyen},
      title = {Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles},
      journal = {American Journal of Modern Physics},
      volume = {6},
      number = {4},
      pages = {66-75},
      doi = {10.11648/j.ajmp.20170604.14},
      url = {https://doi.org/10.11648/j.ajmp.20170604.14},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajmp.20170604.14},
      abstract = {This paper studies the influence of atomic number at temperature of 300 K, temperature at 5324 atoms, phase transition & crystallization at different temperatures of 300 K, 500 K, 600 K, 700 K, 1100 K after 2×105 move steps number by increasing temperature of 4×1012 K/s on microstructure, phase transition temperature, phase transition & crystallization of CuNi nanoparticle by molecular dynamics (MD) with embedded interaction Sutton-Chen and soft boundary conditions. Microstructure characteristics are analyzed through radial distribution function (RDF), energy, size, phase transition temperature (via relationship between energy and temperature), phase transition & crystallization (via radial distribution function, Etot, move step number and common neighbor analysis (CNA)). Results show that first peak position of the radial distribution function is dominant; lengths of Cu-Cu, Ni-Ni with the results of Ni-Ni consistent with simulation. At 300 K temperature, nanoparticle appears in four phases namely FCC, HCP, ICO and Amorphous, presenting the effect of atomic number, temperature and move step number on microstructure, phase transition temperature and phase transition & crystallization of CuNi nanoparticle.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles
    AU  - Trong Dung Nguyen
    Y1  - 2017/07/17
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajmp.20170604.14
    DO  - 10.11648/j.ajmp.20170604.14
    T2  - American Journal of Modern Physics
    JF  - American Journal of Modern Physics
    JO  - American Journal of Modern Physics
    SP  - 66
    EP  - 75
    PB  - Science Publishing Group
    SN  - 2326-8891
    UR  - https://doi.org/10.11648/j.ajmp.20170604.14
    AB  - This paper studies the influence of atomic number at temperature of 300 K, temperature at 5324 atoms, phase transition & crystallization at different temperatures of 300 K, 500 K, 600 K, 700 K, 1100 K after 2×105 move steps number by increasing temperature of 4×1012 K/s on microstructure, phase transition temperature, phase transition & crystallization of CuNi nanoparticle by molecular dynamics (MD) with embedded interaction Sutton-Chen and soft boundary conditions. Microstructure characteristics are analyzed through radial distribution function (RDF), energy, size, phase transition temperature (via relationship between energy and temperature), phase transition & crystallization (via radial distribution function, Etot, move step number and common neighbor analysis (CNA)). Results show that first peak position of the radial distribution function is dominant; lengths of Cu-Cu, Ni-Ni with the results of Ni-Ni consistent with simulation. At 300 K temperature, nanoparticle appears in four phases namely FCC, HCP, ICO and Amorphous, presenting the effect of atomic number, temperature and move step number on microstructure, phase transition temperature and phase transition & crystallization of CuNi nanoparticle.
    VL  - 6
    IS  - 4
    ER  - 

    Copy | Download

  • Sections