Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles
American Journal of Modern Physics
Volume 6, Issue 4, July 2017, Pages: 66-75
Received: May 24, 2017; Accepted: Jun. 13, 2017; Published: Jul. 17, 2017
Views 2415      Downloads 117
Trong Dung Nguyen, Faculty of Physics, Hanoi National University of Education, Hanoi, Vietnam
Article Tools
Follow on us
This paper studies the influence of atomic number at temperature of 300 K, temperature at 5324 atoms, phase transition & crystallization at different temperatures of 300 K, 500 K, 600 K, 700 K, 1100 K after 2×105 move steps number by increasing temperature of 4×1012 K/s on microstructure, phase transition temperature, phase transition & crystallization of CuNi nanoparticle by molecular dynamics (MD) with embedded interaction Sutton-Chen and soft boundary conditions. Microstructure characteristics are analyzed through radial distribution function (RDF), energy, size, phase transition temperature (via relationship between energy and temperature), phase transition & crystallization (via radial distribution function, Etot, move step number and common neighbor analysis (CNA)). Results show that first peak position of the radial distribution function is dominant; lengths of Cu-Cu, Ni-Ni with the results of Ni-Ni consistent with simulation. At 300 K temperature, nanoparticle appears in four phases namely FCC, HCP, ICO and Amorphous, presenting the effect of atomic number, temperature and move step number on microstructure, phase transition temperature and phase transition & crystallization of CuNi nanoparticle.
Atomic Number, Temperature, Move Step Number, Microstructure, Transition Temperature, Crystallization, CuNi Nanoparticle, Molecular Dynamics
To cite this article
Trong Dung Nguyen, Some Factors Affecting Structure, Transition Phase and Crystallized of CuNi Nanoparticles, American Journal of Modern Physics. Vol. 6, No. 4, 2017, pp. 66-75. doi: 10.11648/j.ajmp.20170604.14
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
R. D. S. Lisboa, C. S. Kiminami, J. Non-Cryst. Solids. 304, (2002), 36.
Z. X. Wang, R. J. Wang, W. H. Wang, Mater. Lett. 60, (2005), 831.
Duwez, P. E., Willens, R. H., Klement, W., Continuous series of metastable solid solutions in silver-copper alloys, J. Appl. Phys., 31, (1960), 1136-1137.
Takayama, S., Glass formation and stability, J. Mater. Sci., 11: (1976), 164-185.
Q. X. Pei, C. Lu, H. P. Lee, J. Phys. Condens. Matter 17, (2005), 1493.
L. Hui, B. Xiufang, Z. Jingxiang, Mater. Sci. Eng. A 271, (1999), 116.
H. R. Cong, X. F. Bian, J. X. Zhang, H. Li, Mater. Sci. Eng. A 326, (2002), 343.
L. Qi, H. F. Zhang, Z. Q. Hu, P. K. Liaw, Phys. Lett. A 327, (2004), 506.
M. Yan, J. F. Sun, J. Shen, J. Alloys Comp. 381, (2004), 86.
M. Shimono, H. Onodera, Mater. Sci. Eng. 515, (2001), A 304–306.
J. S. C. Jang, L. J. Chang, G. J. Chen, J. C. Huang, Intermetallics 13, (2005), 907.
Y. L. Gao, J. Shen, J.F. Sun, G. Wang, D.W. Xing, H.Z. Xian, B.D. Zhou, Mater. Lett. 57 (2003) 1894.
D. Caprion, H. R. Schober, J. Non-Cryst. Solids 369, (2003), 326–327.
L. A. Marqués, L. Pelaz, M. Aboy, P. Lopez, J. Barbolla, Comput. Mater. Sci. 33, (2005), 92.
Y. Shao, P. C. Clapp, J. A. Rifkin,Metall. Mater. Trans. A 27A, (1996), 1477.
S. Erkoc, Phys. Rep. 278, (1997), 79.
M. W. Finnis, J. E. Sinclair, Philos. Mag. A 50, (1984) 45.
A. F. Voter, S. P. Chen, in: R. W. Siegel, J. R. Weertman, R. Sinclair (Eds.), Mat. Res. Soc. Symp. Proc., vol. 82, MRS, Pittsburgh, (1987), 175–180.
A. P. Sutton, J. Chen, Philos. Mag. Lett. 61, (1990), 139.
J. H. Shim, S. C. Lee, B. J. Lee, J. Y. Suh, Y. W. Cho, J. Cryst. Growth 250, (2003), 558.
C. Kuiying, S. Xianwei, Z. Xiumu, L. Yiyi, Mater. Sci. Eng. A 214, (1996), 39.
T. M. Brown, J. B. Adams, J. Non-Cryst. Solids 180, (1995), 275.
Y Qi, T Çağin, Y Kimura, WA Goddard, Journal of computer-aided materials design 8 (2), (2001), 233-243.
Saida, J., Matsushita, M., Direct observation of icosahedral cluster in Zr70Pd30 binary glassy alloy, Appl. Phys. Lett., 79: (2001), 412-414.
Zetterling, F. H. M., Dzugutov, M., Formation of large-scale icosahedral clusters in a simple liquid approach- ing the glass transition, J. Non-crystalline solids, 293-295: (2001), 39-44.
Harrop, J. D., Taraskin, S. N., Simdyankin, S. I. et al., Numerical structural analysis of the icosahedral glass and related structures, J. Non-crystalline Solids, (2001), 293-295: 556-561.
A. P. Sutton and J. Chen, Philos. Mag. Lett. 61, (1990), 139.
H. Rafii-Tabar and A. P. Sutton, Philos. Mag. Lett. 63, (1991), 217.
Y Qi, T Çağın, Y Kimura, WA Goddard III, Physical review B 59 (5), (1999), 3527.
Sutton, A. P., Chen, J., Long-range Finnis-Sinclair potentials, Philos, Mag. Lett., 61, (1990), 139-146.
Doye, J. P. K., Wales, D. J., Global minima for transition metal clusters described by Sutton-Chen potentials, New J. Chem., 22, (1998), 733-744.
H. Tsuzuki, P. S. Branicio, J. P. Rino, Computer physics communications 177 (6), (2007), 518-523.
S. Kazanc, "Molecular dynamics study of pressure effect on crystallization behaviour of amorphous CuNi alloy during isothermal annealing", Physics Letters A 365, (2007) 473–477.
P. R. Subramanian, D. J. Chakrabarti, D. E. Laughlin, Phase Diagrams of Binary Alloys, ASM International, Materials Park, OH, (1994).
Qi, Y., Cagin, T., Kimura, Y. et al., Physical review B, 59: (1993), 527-3533.
T. Cagın, G. Dereli, M. Uludogan, and M. Tomak, Physical review B 5, 59 (1999-I), 3468-3473.
E. L. de León-Quiroz, D. Vázquez Obregón et al., Ieee Transactions On Magnetics, 49: (2013), 4522-4524
Ramazan Oguzhan Apaydin, Burcak Ebin and Sebahattin Gurmen, Metallurgical and Materials Transactions A, 47A, (2016), 3744-3752, doi: 10.1007/s11661-016-3514-7.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186