Hypermathematics, Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility
American Journal of Modern Physics
Volume 4, Issue 5-1, October 2015, Pages: 38-46
Received: Jun. 2, 2015; Accepted: Jun. 2, 2015; Published: Aug. 11, 2015
Views 3950      Downloads 88
Author
Thomas Vougiouklis, Democritus University of Thrace, School of Education, Alexandroupolis, Greece
Article Tools
Follow on us
Abstract
We present the largest class of hyperstructures called Hv-structures. In Hv-groups and Hv-rings, the fundamental relations are defined and they connect the algebraic hyperstructure theory with the classical one. Using the fundamental relations, the Hv-fields are defined and their elements are called hypernumbers or Hv-numbers. Hv-matrices are defined to be matrices with entries from an Hv-field. We present the related theory and results on hypermatrices and on the Lie-Santilli admissibility
Keywords
Representations, Hope, Hyperstructures, Hv-Structures
To cite this article
Thomas Vougiouklis, Hypermathematics, Hv-Structures, Hypernumbers, Hypermatrices and Lie-Santilli Addmissibility, American Journal of Modern Physics. Special Issue: Issue I: Foundations of Hadronic Mathematics. Vol. 4, No. 5-1, 2015, pp. 38-46. doi: 10.11648/j.ajmp.s.2015040501.15
References
[1]
R. Anderson, A.A. Bhalekar, B. Davvaz, P.S. Muktibodh, V.M. Tangde, A.S. Muktibodh, T.Vougiouklis, An introduction to Santilli’s isodual theory of antimatter and the open problem of detecting antimatter asteroids, NUMTA Bulletin, 6, 2012-13, 1-33.
[2]
R. Bayon, N. Lygeros, Les hypergroupes abéliens d’ ordre 4, Proceedings: Structure Elements of Hyper-structures, Spanidis Press, 2005, 35-39.
[3]
R. Bayon, N. Lygeros, Advanced results in enumeration of hyperstructures, J. Algebra, 320, 2008, 821-835.
[4]
P. Corsini, V. Leoreanu, Applications of Hypergroup Theory, Kluwer Academic Publ., 2003.
[5]
P. Corsini, T. Vougiouklis, From groupoids to groups through hypergroups, Rendiconti Mat. VII, 9, 1989, 173-181.
[6]
B. Davvaz, On Hv-subgroups and anti fuzzy Hv-subgroups, Korean J. Comp. Appl. Math. V.5, N.1, 1998, 181-190.
[7]
B. Davvaz, On Hv-rings and Fuzzy Hv-ideals, J.Fuzzy Math.V.6,N.1, 1998, 33-42.
[8]
B. Davvaz, Fuzzy Hv-submodules, Fuzzy sets and Systems, 117, 2001, 477-484.
[9]
B. Davvaz, A brief survey of the theory of Hv-structures, 8th AHA, Greece, Spanidis, 2003, 39-70.
[10]
B. Davvaz, Polygroup Theory and Related Systems, World Scientific, 2013.
[11]
B. Davvaz, W. Dudek, T. Vougiouklis, A generalization of n-ary algebraic systems, Communications in Algebra, 37, 2009, 1248-1263.
[12]
B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, Int. Academic Press, USA, 2007.
[13]
B. Davvaz, R.M. Santilli, T. Vougiouklis, Studies of multi-valued hyper-structures for the characterization of matter-antimatter systems and their extension, Algebras, Groups and Geometries 28(1), 2011, 105-116.
[14]
B. Davvaz, R.M. Santilli, T. Vougiouklis, Multi-valued Hypermathematics for characterization of matter and antimatter systems, J. Comp. Methods in Sciences and Engineering 13, 2013, 37–50.
[15]
B. Davvaz, R.M. Santilli, T. Vougiouklis, Mathematical prediction of Ying’s twin universes, American J. of Modern Physics, 4(3), 2015, 5-9.
[16]
B. Davvaz, S. Vougioukli, T. Vougiouklis, On the multiplicative Hv-rings derived from helix hyperoperations, Util. Math., 84, 2011, 53-63.
[17]
B. Davvaz, T. Vougiouklis, N-ary hypergroups, Iranian J. of Science & Technology, Transaction A, V.30, N.A2, 2006, 165-174.
[18]
A. Dramalidis, Geometrical Hv-structures, Proceedings: Structure Elements of Hyper-structures, Spanidis Press, 2005, 41-51.
[19]
S. Hoskova, J. Chvalina, Abelizations of proximal Hv-rings using graphs of good homomorphisms and diagonals of direct squares of hyperstructures, 8th AHA Congress, Spanidis Press, 2003, 147-158.
[20]
A. Iranmanesh, M.N. Iradmusa, Hv-structures associated with generalized P-hyperoperations., Bul. Iranian Math. Soc. V.24, N1, 1998, 33-45.
[21]
P. Kambaki-Vougioukli, A. Karakos, N. Lygeros, T. Vougiouklis, Fuzzy instead of discrete, Annals of Fuzzy Math. Inf. (AFMI), V.2, N.1, 2011, 81-89.
[22]
V. Leoreanu-Fotea, Ivo Rosenberg, B. Davvaz, T. Vougiouklis, A new class of n-ary hyperoperations, European J. Combinatorics, V.44, 2015, 265-273.
[23]
N. Lygeros, T. Vougiouklis, The LV-hyperstructures, Ratio Math., 25, 2013, 59–66.
[24]
A. Madanshekaf, Hv-structures associated with PQ- hyperoperations., J. of Disc. Math. Sc. & Crypt. V.6, N 2-3, 2003, 199-205.
[25]
F. Marty, Sur un généralisation de la notion de groupe, 8éme Congrés Math. Scandinaves, Stockholm, (1934), 45-49.
[26]
F. Marty, Sur les groupes et hypergroupes attachés à une fraction rationele, Annales Ec. Norm. Sup., V 53, (1936), 83-123.
[27]
P. Nikolaidou, T. Vougiouklis, Hv-structures and the Bar in questionnaires, Italian J. Pure and Appl. Math. N.29, 2012, 341-350.
[28]
R.M. Santilli, Hadronic Maths, Mechanics and Chemistry, Vol. I, II, III, IV and V, Int. Academic Press, USA, 2008.
[29]
R.M. Santilli, T. Vougiouklis, Isotopies, Genotopies, Hyper- structures and their Appl., Proc. New Frontiers Hyperstructures and Related Algebras, Hadronic, 1996, 1-48.
[30]
R.M. Santilli, T. Vougiouklis. Lie-admissible hyperalgebras, Italian J. Pure Appl. Math., N.31, 2013, 239-254.
[31]
S. Spartalis, A. Dramalides, T. Vougiouklis, On Hv-group Rings, Algebras, Groups and Geometries, 15, 1998, 47-54.
[32]
S. Vougiouklis, Hv-vector spaces from helix hyperoperations, Int. J. Math. Anal. (New Series), 1(2), 2009, 109-120.
[33]
T. Vougiouklis, Cyclicity in a special class of hypergroups, Acta Un. Car. – Math. Et Ph., V.22, N1, 1981, 3-6.
[34]
T. Vougiouklis, Representations of hypergroups, Hypergroup algebra, Proc. Convegno: ipergrouppi, altre strutture multivoche appl. Udine, 1985, 59-73.
[35]
T. Vougiouklis, On affine Kac-Moody Lie algebras, Commentationes Math. Un. Car., V.26, 2, 1985, 387-395
[36]
T. Vougiouklis, Representations of hypergroups by hypermatrices, Rivista Mat. Pura Appl., N 2, 1987, 7-19.
[37]
T. Vougiouklis, Generalization of P-hypergroups, Rend. Circ. Mat. Palermo, S.II, 36, 1987, 114-121.
[38]
T. Vougiouklis, Groups in hypergroups, Annals of Discrete Math. 37, 1988, 459-468
[39]
T. Vougiouklis, On representations of algebraic multivalued structures, Rivista Mat. Pura Appl., N.7, 1990, 87-92.
[40]
T. Vougiouklis, The fundamental relation in hyperrings. The general hyperfield, Proc. 4th AHA, World Scientific, 1991, 203-211.
[41]
T. Vougiouklis, The very thin hypergroups and the S-construction, Combinatorics ’88, Incidence Geometries Combinatorial Str., 2,1991, 471-477.
[42]
T. Vougiouklis, Representations of hypergroups by generalized permutations, Algebra Universalis, 29, 1992, 172-183.
[43]
T. Vougiouklis, Representations of Hv-structures, Proc. Int. Conf. Group Theory 1992, Timisoara, 1993, 159-184.
[44]
T. Vougiouklis, Hyperstructures and their Representations, Monographs in Math., Hadronic Press, 1994.
[45]
T. Vougiouklis, Some remarks on hyperstructures, Contemporary Math., Amer. Math. Society, 184, 1995, 427-431.
[46]
T. Vougiouklis, A new class of hyperstructures, J.C.I.&S.S.,V.20, N.1-4, 1995, 229-239.
[47]
T. Vougiouklis, Hv-groups defined on the same set, Discrete Math. 155, 1996, 259-265.
[48]
T. Vougiouklis, Consructions of Hv-structures with desired fundamental structures, New frontiers in Hyperstructues, Hadronic Press, 1996, 177-188.
[49]
T. Vougiouklis, On Hv-fields, 6th AHA, Prague 1996, Democritus Univ. Press, 1997, 151-159.
[50]
T. Vougiouklis, Convolutions on WASS hyperstructures, Discrete Math. 174, 1997, 347-355.
[51]
T. Vougiouklis, Enlarging Hv-structures, Algebras and Combinatorics, ICAC’97, Hong Kong, Springer-Verlag, 1999, 455-463.
[52]
T. Vougiouklis, On Hv-rings and Hv-representations, Discrete Math., Elsevier, 208/209, 1999, 615-620.
[53]
T. Vougiouklis, On hyperstructures obtained by attaching elements, Proc. C. Caratheodory in his…origins, Hadronic Press, 2001, 197-206.
[54]
T. Vougiouklis, Finite Hv-structures and their representations, Rend. Seminario Mat. Messina S.II, V.9, 2003, 245-265.
[55]
T. Vougiouklis, Attach, remove, absorb and merge elements, Proc. 8th AHA Congress, Spanidis Press, 2003, 251-260.
[56]
T. Vougiouklis, The h/v-structures, J. Discrete Math. Sciences and Cryptography, V.6, 2003, N.2-3, 235-243.
[57]
T. Vougiouklis, A hyperoperation defined on a groupoid equipped with a map, Ratio Math. on line, N.1, 2005. 25-36.
[58]
T. Vougiouklis, -operations and Hv-fields, Acta Math. Sinica, (Engl. Ser.), V.24, N.7, 2008, 1067-1078.
[59]
T. Vougiouklis, The Santilli’s theory ‘invasion’ in hyperstructures, Algebras, Groups and Geometries 28(1), 2011, 83-103
[60]
T. Vougiouklis The e-hyperstructures, J. Mahani Math. Research Center, V.1, N.1, 2012, 13-28.
[61]
T. Vougiouklis, The Lie-hyperalebras and their fundamental relations, Southeast Asian Bull. Math., V.37(4), 2013, 601-614.
[62]
T. Vougiouklis, Lie-admissible hyperalgebras, Italian J. Pure Appl. Math., N.31, 2013,
[63]
T. Vougiouklis, From Hv-rings to Hv-fields, Int. J. Algebraic Hyperstructures Appl. Vol.1, No.1, 2014, 1-13.
[64]
T. Vougiouklis, On the isoHv-numbers, Hadronic J., Dec.5, 2014, 1-18.
[65]
T. Vougiouklis, Lie-Santilli Admissibility using P-hyper- operations on matrices, Hadronic J. Dec.7, 2014, 1-14.
[66]
T. Vougiouklis, Hypermatrix representations of finite Hv-groups, European J. Combinatorics, V.44 B, 2015, 307-315.
[67]
T. Vougiouklis, Quiver of hyperstructures for Ying’s twin universes, American J. Modern Physics, 4(1-1), 2015, 30-33.
[68]
T. Vougiouklis, S. Vougiouklis, The helix hyperoperations, Italian J. Pure Appl. Math., 18, 2005, 197-206.
[69]
T. Vougiouklis, P. Kambaki-Vougioukli, On the use of the bar, China-USA Business Review, V.10, N.6, 2011, 484-489.
[70]
T. Vougiouklis, P. Kambakis-Vougiouklis, Bar in Questionnaires, Chinese Business Review, V.12, N.10, 2013, 691-697.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186