Diffusivity Scaling on Shear Flow
American Journal of Modern Physics
Volume 3, Issue 5, September 2014, Pages: 202-206
Received: Sep. 4, 2014; Accepted: Sep. 20, 2014; Published: Sep. 30, 2014
Views 2857      Downloads 121
Authors
Zhong-Tian Wang, Southwestern Institute of Physics, Chengdu, Sichuan, 610041, China; College of Physics Science and Technology, Sichuan University, Chengdu, Sichuan, 610065, China
Zhi-Xiong He, Southwestern Institute of Physics, Chengdu, Sichuan, 610041, China
Jia-Qi Dong, Southwestern Institute of Physics, Chengdu, Sichuan, 610041, China
Zhan-Hui Wang, Southwestern Institute of Physics, Chengdu, Sichuan, 610041, China
Shao-Yong Chen, College of Physics Science and Technology, Sichuan University, Chengdu, Sichuan, 610065, China
Chang-Jian Tang, College of Physics Science and Technology, Sichuan University, Chengdu, Sichuan, 610065, China
Article Tools
Follow on us
Abstract
Diffusivity scaling on shear flow is investigated. Radial electrical field is the drive of the flow. The turning points of the trapped particle are not on the drift surface, but modified by the radial electrical field. For the first time, an analytical expression of the banana width in presence of shear flow is accurately derived. The particle diffusivity given by Rosenbluth is reproduced but with the shear flow modification.
Keywords
Tokamak Plasma, Diffusivity Scaling, Shear Flow, Trapped Particle, Guiding-Center
To cite this article
Zhong-Tian Wang, Zhi-Xiong He, Jia-Qi Dong, Zhan-Hui Wang, Shao-Yong Chen, Chang-Jian Tang, Diffusivity Scaling on Shear Flow, American Journal of Modern Physics. Vol. 3, No. 5, 2014, pp. 202-206. doi: 10.11648/j.ajmp.20140305.12
References
[1]
E.J.Doyle, R.J. Groebner, K.M.Burrell, P. Gohil, T. Lehcka, N. C. Luhmann Jr., H. Matsumoto, T. H. Osborne, W. A. Peebles, and R. Philipona, Modification in turbulence and edge electric field at the L-H transition in Dlll-D tokamak, Phys. Fluids B 3, 2300(1991).
[2]
F.L.Hinton and S.K.Wong, Neoclassical ion transport in rotating axisymmetrical plasmas, Phys. Fluids 28, 3082(1985).
[3]
R.D.Hazeltine, Self-consistent radial sheath, Phys.Fluids B1, 2031(1989).
[4]
G. Kagan and P. J. Catto, Phys. Rev. Lett. 105, 045002(2010).
[5]
K. C. Shaing and C. T. Hsu, Phys. Plasmas 19, 022502(2012).
[6]
P. J. Catto, F. I. Parra, G. Kagan, J. B. Parker, I. Pusztai, and M. Landreman, Plasma Phys. Control. Fusion, 55, 045009(2013).
[7]
M. N. Rosenbluth, R. D. Hazeltine, F. L. Hinton, Phys. Fluids, 15, 116(1972).
[8]
R. G. Littlejohn, J. Plasma physics 29, 111(1983).
[9]
A. J. Lichtenberg and Lieberman, Regular and Stochastic Motion, Applied Sciences 38, (Springer-Verlag New York Inc. 1983).
[10]
R. Balescu, in Transport Processes in Plasma, (North-Holland, Amsterdam  Oxford  New York  Tokyo, 1988), Vol.2, P.393.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186