Energy Levels of Weak Coupling Magneto-Optical Polaron and Temperature Effect in Spherical Quantum Dot
American Journal of Modern Physics
Volume 4, Issue 4, July 2015, Pages: 158-164
Received: May 17, 2015; Accepted: May 29, 2015; Published: Jun. 11, 2015
Views 4547      Downloads 194
Authors
Nsangou Issofa, Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon
Alain Jerve Fotue, Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon
Sadem Christian Kenfack, Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon
Maurice Tiotsop, Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon
Michel Pascal Tabue Djemmo, Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon; Laboratory of Mechanics and Modeling of Physical Systems, Faculty of Science, University of Dschang, Dschang, Cameroon
Amos Veyongni Wirngo, Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon
Hilaire Fotsin, Laboratory of Electronics and Signal Processing, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon
Lukong Cornelius Fai, Mesoscopic and Multilayers Structures Laboratory, Department of Physics, Faculty of Science, University of Dschang, Dschang, Cameroon
Article Tools
Follow on us
Abstract
In this paper, we investigate the influence of the magnetic field and the temperature on the ground state energy of a weak coupling polaron in a spherical semiconductor quantum dot (QD) using the modified LLP method. The ground state energy of a weak coupling magneto-optical polaron is split into sub-energy levels and there is the degeneracy of the energy levels. It is also seen that the split energies are increasing functions of the electron-phonon coupling constant and decreasing functions of the magnetic field while the temperature is an increasing function of the cyclotron frequency for very low values of the longitudinal confinement length.
Keywords
Magnetic Field, Temperature, Modified LLP, Polaron Energy, Quantum Dot
To cite this article
Nsangou Issofa, Alain Jerve Fotue, Sadem Christian Kenfack, Maurice Tiotsop, Michel Pascal Tabue Djemmo, Amos Veyongni Wirngo, Hilaire Fotsin, Lukong Cornelius Fai, Energy Levels of Weak Coupling Magneto-Optical Polaron and Temperature Effect in Spherical Quantum Dot, American Journal of Modern Physics. Vol. 4, No. 4, 2015, pp. 158-164. doi: 10.11648/j.ajmp.20150404.12
References
[1]
R. T. Senger and A. Erçelebi. Solid State Phys, 22,169 (1998)
[2]
Y.B. Yu., S.N.Zhu, K. X.Guo. Solid State Commun, 132 (10), 689 (2004)
[3]
Liang, X.X., Gu, S.W., Lin, D.L. Phys. Rev. B., 34 (4), 2807 (1986)
[4]
Zhu, K.D., Kobayashi, T. 92 (4), 353 (1994)
[5]
Licari, J.J., Evrard, R. Phys. Rev. B., 15 (4), 2254 (1977)
[6]
Das Sarma S. and Mason B.A. Ann. phy.NY,163 (1), 78 (1985)
[7]
Licari J.J. Solid State Commun, 29 (8), 625 (1979)
[8]
Comas F., Trallero-inner, C, Riera, R. Phys. Rev. B., 39(9), 5907 (1989)
[9]
Yu Yi-Fu, Xiao Jing-Lin, Yin Ji-Wen and Wang Zi-Wu. Chinese Physics B., 17(6), 2236 (2007)
[10]
P. Roussignol, D. Ricard and C. Flytzanis. Phys. Rev. Lett., 62, 312 (1989)
[11]
K. D. Zhu and S. W. Gu. J. Phys.: Condens. Matter, 4, 1291 (1992)
[12]
S. Mukhopadhyay and A. Chatterjee. J. Phys.: Condens. Matter, 8 (22), 4017 (1996)
[13]
K. D. Zhu and S. W. Gu. Phys. Lett. A., 163 (5-6), 435 (1992)
[14]
A. Chatterjee and S. Mukhopadhyay. Acta Phys. Polon. B., 32 (2), 473 (2001)
[15]
S. Hameau, Y. Guldner, O. Verzelen, R. Ferreira, G. Bastard, J. Zeman, A. Lemaıtre, and J. M. Gerard. Phys. Rev. Lett., 83 (20), 4152 (1999)
[16]
ZherSamak, Bassam Saqqa. An - Najah Univ. J. Res. (N. Sc.), 23, 15 (2009)
[17]
ZherSamak, BassamSaqqa. An - Najah Univ. J. Res. (N. Sc.), 24, 55 (2010)
[18]
T. Stauber, R. Zimmermann, and H. Castella. Phys. Rev. B., 62 (11), 7336 (2000)
[19]
M. Tchoffo , L .C. Fai, N.Issofa, S.C.Kenfack, J.T.Diffo, A. MODY. International Journal of Nanoscience 8 (4), 455 (2009)
[20]
T. Inoshita, H. Sakaki. Phys. Rev. B., 46(11), 7260 (1992)
[21]
Satyabrata, Sahoo. Phys. letters A., 238 (6), 390 (1998)
[22]
Erçelebi A. and R. T. Senger, R.T. J. Phys.: Condens. Matter, 6(28), 5455 (1994)
[23]
A. J. Fotue, S. C. Kenfack, H. Fotsin, M. Tiotsop, L. C. Fai and M. P. Tabue Djemmo physical science international journal, 6 (1), 25 (2015)
[24]
Shu-Ping Shan, Shi-Hua Chen and Jing-Lin Xiao, QD J. low Temp Phys 176, 93(2014)
[25]
Ji-Wen Yin, Wei –ping Li, Yi-Fu Yu and Jing-lin xiao, J. low Temp Phys (2011) 163, 53(2011)
[26]
S.H. Chen, J. L. International Journal of Modern Physics B. 22 (16), 2611(2008)
[27]
N. Kervan, T. Altanhan, A. Chatterjee. Phys. Lett. A. 315 (3-4), 280(2003)
[28]
Jing-Lin Xiao, J. Low Temp Phys 168, 297(2012)
[29]
Cui-Lan Zhao and Jing-Lin Xiao, J. Low Temp Phys 160, 209 (2010)
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186