Phonon Confinement Using Spirally Designed Elastic Resonators in Discrete Continuum
International Journal of Materials Science and Applications
Volume 3, Issue 1, January 2014, Pages: 6-13
Received: Dec. 7, 2013; Published: Jan. 10, 2014
Views 3359      Downloads 193
Authors
Sourav Banerjee, Dept. of Mechanical Engineering, University of South Carolina, Columbia, South Carolina, USA
Riaz Uddin Ahmed, Dept. of Mechanical Engineering, University of South Carolina, Columbia, South Carolina, USA
Article Tools
PDF
Follow on us
Abstract
Periodic and chiral orientation of microstructures, here we call phononic crystals, have extraordinary capabilities to facilitate the innovative design of new generation metamaterials. Periodic arrangements of phononic crystals are capable of opening portals of non-passing, non-dispersive mechanical waves. Defying conventional design of regular periodicity, in this paper spirally periodic but chiral orientation of resonators are envisioned. Dynamics of the spirally connected resonators and the acoustic wave propagation through the spirally connected multiple local resonators are studied using fundamental physics. In present study the spiral systems with local resonators are assumed to be discrete media immersed in fluid. In this paper it is assumed that acoustic or ultrasonic waves in fluid are propagated along the plane of the spiral resonators and thus only the longitudinal wave mode exists due to nonexistence of shear stress in the fluid. Lagrangian formulation of the spiral systems were employed to obtain the governing Euler-Lagrange equation of the system. Discrete element method was employed to verify the equation assuming nearest neighboring effect.
Keywords
Spiral Resonators, Phonon Confinement, Discrete Continuum Model, Spiral Metamaterials
To cite this article
Sourav Banerjee, Riaz Uddin Ahmed, Phonon Confinement Using Spirally Designed Elastic Resonators in Discrete Continuum, International Journal of Materials Science and Applications. Vol. 3, No. 1, 2014, pp. 6-13. doi: 10.11648/j.ijmsa.20140301.12
References
[1]
Montero de Espinoza, F.R., Jimenez, E., Torres, M., (1998). Ultrasonic Band Gap in a Periodic Two-Dimensional Composite. Phys. Rev. Lett. 80, 1208
[2]
Li, X., Liu, Z.Y., (2005). Coupling of cavity modes and guiding modes in two-dimensional phononic crystals. Solid State Commun. 133, 397.
[3]
Poulton, C. G., Movchan, A. B., McPhedran, R. C., Nicorovici, N. A., and Antipov, Y. A., (2000). Eigenvalue Problems for Doubly Periodic Elastic Structures and Phononic Band Gaps. Proc. R. Soc. London, Ser. A, 456, 2543–2559.
[4]
Xu, Y. L., Chen, C. Q., Tian, X. G., (2013). Phonon-polarization and band structure of electro-magneto-acoustic SH wave propagation oblique to the periodic layers piezoelectric. Physics Letters A., 377, 895-902.
[5]
Li, J., and Chan, C. T., (2004). Double-Negative Acoustic Metamaterial. Phys. Rev. E, 70, 055602.
[6]
Yao, S. S., Zhou, X. M., and Hu, G. K., (2008). Experimental Study on Negative Effective Mass in a 1D Mass-Spring System. New J. Phys., 10, 043020
[7]
Hirsekorn, M., Delsanto, P.P., Batra, N. K., Matic, P., (2004). Modelling and simulation of acoustic wave propagation in locally resonant sonic materials. Ultrasonics, 42(19), 231-235.
[8]
Hsu, J. C., (2011). Local resonances-induced low-frequency band gaps in two-dimensional phononic crystal slabs with periodic stepped resonators. J. Phys. D: Appl. Phys., 44, 055401.
[9]
Caballero, D., S'anchez-Dehesa, J., Rubio, C., M'artinez-Sala, R., S'anchez-P'erez, J., V., Meseguer, F., Llinares, J., (1999). Large two-dimensional sonic band gaps. Phys. Rev. E, 60(6), R6316-R6319.
[10]
Caballero, D., S'anchez-Dehesa, J., Rubio, C., M'artinez-Sala, R., S'anchez-P'erez, J., V., Meseguer, F., Llinares, J., (1999). Large two-dimensional sonic band gaps. Phys. Rev. E, 60(6), R6316-R6319.
[11]
Liu, Z., Chan, C. T., and Sheng, P., (2005). Analytic Model of Phononic Crystals WithLocal Resonances. Phys. Rev. B, 71, 014103.
[12]
Mainzer, K., Symmetries of Nature: A Handbook for Philosophy of Nature and Science, Walter de Gruyter& Co., ISBN 3-11-012990-6, 1998.
[13]
Nemer, S., Sauviac, B., Bayard, B., Nader, C., Bechara, J., and Khoury, A., (2011). Modelling resonance frequencies of a multi-turn spiral for metamaterial applications. Progress In Electromagnetics Research C, 20, 31-42.
[14]
Baena, J., Marqués, R., Medina, F., & Martel, J., (2004). Artificial magnetic metamaterial design by using spiral resonators. Physical Review B, 69(1), 1-5.
[15]
He, M., Han, J., Tian, Z., Gu, J., Xing, Q., (2011). Negative refractive index in chiral spiral metamaterials at terahertz frequencies. Optik - International Journal for Light and Electron Optics, 122(18), 1676-1679.
[16]
Isik, O., Esselle, K., P., (2009). Analysis of spiral metamaterials by use of group theory. Metamaterials, 3(1), 33-43.
[17]
Elford, D., P., Chalmers, L., Kusmartsev, F., V., Shallowe, G., M., (2010). Acoustic band gap formation in metamaterials. International Journal of Modern Physics B, 24 (25-26), 4935-4945.
[18]
Goldstein, H., Poole, P. Charles, Safko, J., Classical Mechanics, Pearson, ISBN 978-81-317-5891-5, 2011.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186