Optimum Composition for High Strength Aluminium Flux Using the Gauss-Jordan Row Operation Model
International Journal of Materials Science and Applications
Volume 4, Issue 3, May 2015, Pages: 198-202
Received: Feb. 8, 2015; Accepted: Mar. 23, 2015; Published: May 14, 2015
Views 5917      Downloads 144
Authors
Joseph Achebo, Department of Production Engineering, University of Benin, Benin City, Edo State, Nigeria
Monday Omoregie, Department of Production Engineering, University of Benin, Benin City, Edo State, Nigeria
Article Tools
Follow on us
Abstract
Globally, aluminium and its alloys are generally regarded as materials that are difficult to weld. Research is ongoing with a view to finding newer and better ways to repair or weld these alloys. Consequently various mathematical models are currently being adapted to formulate new compositions for aluminium welding fluxes. In this study, a new flux was developed for the welding of high strength aluminium alloy using the Gauss Jordan Row Operation model. By applying this model, an optimum composition of 39% NaCl , 20.5% CaCl2 , 20.5% KCl, 6% CaF2, and 14% 3NaFAlF3, was obtained. The weldment which resulted from the application of this optimum flux was subjected to certain mechanical tests, such as the tensile test, hardness test, and micro-structural analysis. The ultimate tensile strength of the weld was found to be 428 MPa, 0.2% proof stress of 305 MPa, and a Brinell hardness number of 94. These values compare well with published values in literature. Also from the micro-structural analysis, the weld is confirmed to be of good quality. A systematic (step by step) approach has been applied in this research work and found to be very rewarding.
Keywords
Aluminium, Flux, Gauss-Jordan Row Operation Model, Mechanical Properties
To cite this article
Joseph Achebo, Monday Omoregie, Optimum Composition for High Strength Aluminium Flux Using the Gauss-Jordan Row Operation Model, International Journal of Materials Science and Applications. Vol. 4, No. 3, 2015, pp. 198-202. doi: 10.11648/j.ijmsa.20150403.17
References
[1]
J.I. Achebo, “A Multiphysics Analysis of Aluminum Welding Flux Composition Optimization Methods”, in Advances in Computer Science and Engineering, Chapter 11, Edited by Matthias Schmidt, INTECH Open Access Publication, Rijeka, Croatia, 2011, pp 215-236.
[2]
J. I. Achebo, and A. O. A. Ibhadode, Development of a New Flux for Aluminium Gas Welding, Materials and Product Technologies, Edited by Z. Y. Shen; M. N. James; W. D. Li, and Y. X. Zhao., Trans Tech Publications Ltd, Switzerland, Vol. 44 - 46 of Advanced Materials Research, 2008,pp677- 684
[3]
C.E. Jackson, ‘Fluxes and Slags in Welding’ Welding Research Council Bulletins 190, 1973,pp25-57.
[4]
K. Sham and S. Liu. Flux ¬Coating Development for SMAW Consumable Electrode of High¬ Nickel Alloys. Welding Journal, 8, 2014,pp. 271s – 281s
[5]
O. Manfredi, W.Wulh, and I. Bohlinger, Characterizing the Physical and Chemical Properties of Aluminum Dross JOM,1997,pp 48
[6]
E. V. Nikitina, Development of the Composition of Electrode Coatings for WeldingAluminum Alloys Using the Expert Evaluation Method’, Welding International,18(4), 2004,pp 307–310.
[7]
J. I. Achebo, and A. O. AIbhadode, ‘Development of Optimum Welding Flux Composition using the Bend Strength Test’ Materials and Product Technologies, Edited by A. O. A. Ibhadode. Trans Tech Publications Ltd, Switzerland, Vol. 62 - 64 of Advanced Materials Research, 2009,pp393-397
[8]
B. Singh, Z.A.Khan and A. N.Siddiquee. Review on effect of flux composition on its behavior and bead geometry in submerged arc welding (SAW), Journal of Mechanical Engineering Research, Vol. 5(7), pp.123 -127, October 2013 DOI 10.5897/JMER2013.0284
[9]
T. A. Utigard, K. Friesen, R. R.Roy, J. Lim, A. Silny and C. Dupuis, The Properties and Uses of Fluxes in Molten Aluminum Processing’ JOM, 1998, pp 38
[10]
G. Padmanabham, M. Schaper, S. Pandey, and E. Simmchen,. Tensile and Fracture Behavior of Pulsed Gas Metal Arc Welded Al – Cu – Li. Welding Journal, 86, 2007,pp147s – 160s.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186