Hydrothermal Synthesis and Luminescence Properties of Monodisperse Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) Microcrystals
International Journal of Materials Science and Applications
Volume 5, Issue 2, March 2016, Pages: 54-60
Received: Apr. 8, 2016; Published: Apr. 9, 2016
Views 3318      Downloads 80
Authors
Xiaohong Yang, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
Jingjing Cao, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
Shanshan Hu, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, China
Article Tools
Follow on us
Abstract
Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) with tunable particle size (about 2.5 µm) have been synthesized by one-step facile and effective hydrothermal method. The spherical structure was highly uniform and well-dispersed. It was found that reaction time, pH value, and reaction temperature have important effects on the controlled synthesis of spherical CaF2. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), photo-luminescence (PL) and luminescence decay curve. Under UV excitation, the CaF2:Eu3+ showed the red emission (5D07FJ = 0, 1, 2, 3) and the CaF2:Tb3+ presented the green emission (5D47FJ = 6, 5, 4, 3), respectively. Furthermore, Ce3+/Tb3+ co-doped CaF2 showed efficient energy transfer from Ce3+ to Tb3+, which presented strong green photo-luminescence of Tb3+. Due to excellent luminescent properties, the obtained samples can be used in many fields, such as light display systems, optoelectronic devices and biological imaging.
Keywords
CaF2, Hydrothermal Synthesis, Ce→Tb Energy Transfer, Spherical, Luminescence Properties
To cite this article
Xiaohong Yang, Jingjing Cao, Shanshan Hu, Hydrothermal Synthesis and Luminescence Properties of Monodisperse Spherical CaF2 and CaF2:Ln3+ (Ln = Eu, Tb, Ce/Tb) Microcrystals, International Journal of Materials Science and Applications. Vol. 5, No. 2, 2016, pp. 54-60. doi: 10.11648/j.ijmsa.20160502.14
References
[1]
H. H. Gorris, O. S. Wolfbeis, Photonen aufkonvertierende Nanopartikel zur optischen Codierung und zum Multiplexing von Zellen, Biomolekülen und Mikrosphären, Angew. Chem. 125 (2013) 3668-3686.
[2]
A. D. Ostrowski, E. M. Chan, D. J. Gargas, E. M. Katz, G. Han, P. J. Schuck, D. J. Milliron, B. E. Cohen, Controlled Synthesis and Single-Particle Imaging of Bright, Sub-10nm Lanthanide-Doped Upconverting Nanocrystals., ACS. Nano. 6 (2012) 2686-2692.
[3]
Y. S. Liu, D. T. Tu, H. M. Zhu, X. Y. Chen, Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42 (2013) 6924-6958.
[4]
F. Wang, X. G. Liu, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem. Soc. Rev. 38 (2009) 976-989.
[5]
X. Wang, J. Zhuang, Q. Peng, Y. D. Li, A general strategy for nanocrystal synthesis, Nature, 437 (2005 ) 121-124.
[6]
R. Yan, Y. D. Li, Down/Up Conversion in Ln3+-Doped YF2 Nanocrystals, Adv. Funct. Mater. 15 (2005) 763-770.
[7]
G. De, W. Qin, J. Zhang, J. Zhang, Y. Wang, C. Cao, Y. Cui, Synthesis and photol-uminescence of single crystals europiumion-doped BaF2 cubic nanorods, J. Solid State Chem. 179 (2006) 955-958.
[8]
R. Singh, S. Sinha, P. Chou, N. J. Hsu, F. Radpour, Preparation of BaF2 films by metalorganic chemical vapor deposition, J. Appl. Phys. 66 (1989) 6179.
[9]
L. L. Chase, Microwave-Optical Double Resonance of the Metastable 4f65d Level of Eu2+ in the Fluorite Lattices, Phys. ReV. B. 2 (1970) 2308.
[10]
A. W. Hull, The Crystal Structure of Calcium, Phys. ReV. 17 (1921) 42.
[11]
G. F. Wang, Q. Peng, Y. D. Li, Upconversion Luminescence of Monodisperse CaF2:Yb3+/Er3+ Nanocrystals, J. Am. Chem. Soc. 131 (2009) 14200-14201.
[12]
W. S. Wang, L. Zhen, C. Y. Xu, J. Z. Chen, W. Z. Shao, Aqueous Solution Synthesis of CaF2 Hollow Microspheres via the Ostwald Ripening Process at Room Temperature, ACS Appl. Mater. Interfaces. 1 (2009) 780-788.
[13]
N. S. Sokolov, S. M. Suturin, MBE-growth peculiarities of fluoride (CdF2-CaF2) thin film structures, Thin Solid Films, 367 (2000) 112-119.
[14]
T. Pilvi, K. Arstila, M. Leskel, M. Ritala, Novel ALD Process for Depositing CaF2 Thin Films, Chem. Mater. 19 (2007) 3387-3392.
[15]
M. H. Cao, C. W. Hu, E. B. Wang, The First Fluoride One-Dimensional Nanostructures: Microemulsion-Mediated Hydrothermal Synthesis of BaF2 Whiskers, J. Am. Chem. Soc. 125 (2003) 11196-11197.
[16]
D. J. Norris, A. L. Efros, S. C. Erwin, Doped Nanocrystals, Science 319 (2008) 1776-1779.
[17]
X. Feng, D. C. Sayle, Z. L. Wang, M. S. Paras, Converting Ceria Polyhedral Nanoparticles into Single-Crystal Nanospheres, Science 312 (2006) 1504-1508.
[18]
D. Mocatta, G. Cohen, J. Schattner, O. Millo, E. Rabani, U. Banin Science 332 (2011) 48-49.
[19]
J. H. Yu, S. H. Kwon, Z. Petrášk, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, High-resolution three-photon bio-medical imaging using doped ZnS nanocrystals, Nat. Mater. 12 (2013) 359-366.
[20]
Y. F. Yang, Y. Z. Jin, H. P. He, Q. L. Wang, Y. Tu, Dopant-Induced Shape Evolution of Colloidal Nanocrystals: The Case of Zinc Oxide, J. Am. Chem. Soc. 132 (2010) 13381-13394.
[21]
Y. Ding, J. Gu, J. Ke, Y. W. Zhang, C. H. Yan, Sodium Doping Controlled Synthesis of Mono-disperse Lanthanide Oxysulfide Ultrathin Nanoplates Guided by Density Functional Calculations, Angew. Chem. Int. Ed. 50 (2011) 12330-12334.
[22]
R. Buonsanti, D. J. Milliron, Chemistry of Doped Colloidal Nanocrystals, Chem. Mater. 25 (2013) 1305-1317.
[23]
D. Q. Chen, Y. S. Wang, Impurity doping: a novel strategy for controllable synthesis of functional lanthanide nanomaterials, Nanoscale 5 (2013) 4621-4637.
[24]
I. López, E. Nogales, B. Méndez, J. Piqueras, Influence of Sn and Cr Doping on Morphology and Luminescence of Thermally Grown Ga2O3 Nanowires, J. Phys. Chem. C. 117 (2013) 3036-3045.
[25]
F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping, Nature 463 (2010) 1061-1065.
[26]
D. Q. Chen, Y. L. Yu, F. Huang, P. Huang, A. P. Yang, Y. S. Wang, Modifying the Size and Shape of Monodisperse Bifunctional Alkaline-Earth Fluoride Nanocrystals through Lanthanide Doping, J. Am. Chem. Soc. 132 (2010) 9976-9978.
[27]
S. J. Zeng, G. Z. Ren, C. F. Xu, Q. B. Yang, Modifying crystal phase, shape, size, optical and magnetic properties of mono-dispersed multifunctional NaYbF4 nanocrystals through lanthanide doping, Cryst Eng Comm 13 (2011) 4276-4281.
[28]
A. Lauria, I. Villa, M. Fasoli, M. Niederberger, A. Vedda, Multifunctional Role of Rare Earth Doping in Optical Materials: Nonaqueous SolGel Synthesis of Stabilized Cubic HfO2 Luminescent Nanoparticles, ACS Nano 7 (2013) 7041-7052.
[29]
H. Na, K. Woo, K. Lim, H. S. Jang, Rational morphology control of b-NaYF4:Yb,Er/Tm upconversion nanophosphors using a ligand, an additive, and lanthanide doping., Nanoscale 5 (2013) 4242-4251.
[30]
Z. L. Wang, Z. W. Quan, J. Lin, Remarkable Changes in the Optical Properties of CeO2 Nanocrystals Induced by Lanthanide Ions Doping, Inorg. Chem. 46 (2007) 5237-5242.
[31]
H. L. Qiu, G. Y. Chen, R. W. Fan, C. Cheng, S. W. Hao, D. Y. Chen, C. H. Yang, Tuning the size and shape of colloidal cerium oxide nanocrystals through lanthanide doping, Chem. Commun. 47 (2011) 9648-9650.
[32]
X. F. Yu, M. Li, M. Y. Xie, L. D. Chen, Y. Li, Q. Q. Wang, Dopant-Controlled Synthesis of Water-Soluble Hexagonal NaYF4 Nanorods with Efficient Upconversion Fluorescence for Multicolor Bioimaging, Nano Res. 3 (2010) 51-60.
[33]
G. Chen, H. Qiu, P. N. Prasad, X. Chen, Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics., Chem. Rev.114 (2014) 5161-5214.
[34]
F. Wang, X. P. Fan, D. B. Pi, M. Q. Wang, Synthesis and luminescence behavior of Eu3+-doped CaF2 nanoparticles, Solid State Commun. 133 (2005) 775.
[35]
J. S. Wang, W. R. Miao, Y. X. Li, H. C. Yao, Z. J. Li, Water-soluble Ln3+-doped calcium fluoride nanocrystals: Controlled synthesis and luminescence properties, Mater. Lett. 63 (2009) 1794.
[36]
A. Bensal, M. Mortier, G. Patriarche, P. Gredin, D. Vivien, Synthesis and optical chara-cterizations of undoped and rare-earth-doped CaF2 nanoparticles, J. Solid State Chem. 179 (2006) 2636.
[37]
A. Jouini, A. Brenier, Y. Guyot, G. Boulon, H. Sato, A. Yoshikawa, K. Fukuda, T. Fukuda, Spectroscopic and Laser Properties of the Near-Infrared Tunable Laser Material Yb3+-Doped CaF2 Crystal, Cryst. Growth Des. 8 (2008) 808.
[38]
X. M. Zhang, Z. W. Quan, J. Yang, P. P. Yang, H.Z. Lian, J. Lin, Solvothermal synthesis of well-dispersed MF2 (M = Ca, Sr, Ba) nanocrystals and their optical properties, Nanotechnology 19 (2008) 075603.
[39]
C. M. Zhang, C. X. Li, C. Peng, R. T. Chai, S. S. Huang, D. M. Yang, Z. Y. Cheng, J. Lin, Facile and Controllable Synthesis of Mono-disperse CaF2 and CaF2:Ce3+/Tb3+ Hollow Spheres as Efficient Luminescent Materials and Smart Drug Carriers, Chem. Eur. J. 16 (2010) 5672-5680.
[40]
S. Y. Hou, Y. C. Zou, X. C. Liu, X. D. Yu, B. Liu, X. J. Sun, Y. Xing, CaF2 and CaF2:Ln3+ (Ln= Er, Nd, Yb) hierarchical nanoflowers: hydrothermal synthesis and luminescent properties, CrystEng Comm, 13 (2011) 835-840.
[41]
X. H. He, B. Yan, “One-Stone-Two-Birds” Modulation for Na3ScF6-Based Novel Nanocrystals: Simultaneous Morphology Evolution and Luminescence Tuning, Cryst. Growth Des. 14 (2014) 3257-3263.
[42]
C. Y. Cao, H. K. Yang, J. W. Chung, B. K. Moon, Hydrothermal synthesis and optical properties of Eu3+ doped NaREF4 (RE = Y, Gd), LnF3 (Ln = Y, La), and YF3-1.5NH3 micro/nanocrystals, Mater Res Bull 46 (2011) 1553-1559.
[43]
F. Tao, Z. J. Wang, L. Z. Yao, W. L. Cai, X. G. Li, Synthesis and Photoluminescence Properties of Truncated Octahedral Eu-Doped YF3 Submicrocrystals or Nanocrystals, J. Phys. Chem. C 111 (2007) 3241-3245.
[44]
E. Bovero, F. C. J. M. van. Veggel, Conformational Characterization of Eu3+-Doped LaF3 Core-Shell Nanoparticles through Luminescence Anisotropy Studies, J. Phys. Chem. C. 111 (2007) 4529-4534.
[45]
L. G. DeShazer, G. H. Dieke, Spectra and Energy Levels of Eu3+ in LaCl3, J. Chem. Phys. 38 (1963) 2190.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931