Effect of Chill Wheel Cooling on Magnetic Properties of Nd15Fe77B8 Alloy Powders Produced by Melt Spinning Method
International Journal of Materials Science and Applications
Volume 6, Issue 5, September 2017, Pages: 241-249
Received: Aug. 14, 2017; Accepted: Aug. 25, 2017; Published: Sep. 19, 2017
Views 2340      Downloads 118
Authors
Sultan Öztürk, Department of Metallurgy and Materials Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
Kürşat Icin, Department of Metallurgy and Materials Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
Bülent Öztürk, Department of Metallurgy and Materials Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
Uğur Topal, Department of Metallurgy and Materials Engineering, Faculty of Engineering, Karadeniz Technical University, Trabzon, Turkey
Hülya Kaftelen Odabaşi, Department of Airframe and Powerplant, School of Aviation Fırat University, Elazig, Turkey
Article Tools
Follow on us
Abstract
In this study, effect of wheel cooling on magnetic properties of Nd15Fe77B8 alloy powders produced by melt spinning method has been investigated. The present method includes the cooling of the copper wheel by externally contacting a coolant block which is cooled by internally circulating freon gas. Within this framework, the effect of wheel temperature on the microstructure and magnetic properties of Nd15Fe77B8 powders have been investigated. The temperatures of cooling block and melt spinning wheel were measured as -15°C and -5°C, before experimental run, separately. Produced powders exhibited different morphologies depending on the powder sizes. The smallest size of powders was formed as spherical, ligamental and fiber-like morphologies. As powders get larger, the amount of spherical, ligamental and fiber-like shaped powders decreased and the length of the fibers declined. The microstructural cell sizes for 5 µm and 48 µm size powders were measured as 0.22 µm and 1.23 µm, respectively. The cooling rates of 4 µm, 28 µm and 52 µm sized powders were measured as 5.95 x 106 K/s, 0.85 x 106 K/s and 0.45 x 106 K/s, respectively. The Curie temperature of produced powders was 321.5°C. The coercivity value of melt-spun powders was obtained as 2.842 kOe.
Keywords
Melt Spinning, Cooled Wheel, Nd15Fe77B8 Magnetic Alloy
To cite this article
Sultan Öztürk, Kürşat Icin, Bülent Öztürk, Uğur Topal, Hülya Kaftelen Odabaşi, Effect of Chill Wheel Cooling on Magnetic Properties of Nd15Fe77B8 Alloy Powders Produced by Melt Spinning Method, International Journal of Materials Science and Applications. Vol. 6, No. 5, 2017, pp. 241-249. doi: 10.11648/j.ijmsa.20170605.13
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
M. Abuin, Z. Turgut, N. Aronhime, V. Keylin, A. Leary, V. DeGeorge, J. Horwath, S. L. Semiatin, D. E. Laughlin, M. E. McHenry, Metall. Mater. Trans. A, 46 (2015) 5002-5010.
[2]
B. Davies, R. Mottram, I. Harris, Mater. Chem. Phys. 67 (2001) 272-281.
[3]
D. C. Jiles, Acta Mater., 51 (2003) 5907-5939.
[4]
B. Ma, J. Herchenroeder, B. Smith, M. Suda, D. Brown, Z. Chen, J. Magn. Magn. Mater., 239 (2002) 418-423.
[5]
Y. Matsuura, J. Magn. Magn. Mater., 303 (2006) 344-347.
[6]
S. Ozawa, T. Saito, T. Motegi, J. Alloy Compd., 363 (2004) 268-275.
[7]
K. Umadevi, M. Palit, J. A. Chelvane, D. A. Babu, A. P. Srivastava, S. V. Kamat, V. Jayalakshmi, J. Superconduc. Novel Magnet., 29 (2016) 2455-2460.
[8]
J. Gao, T. Volkmann, S. Roth, W. Löser, D. Herlach, J. Magn. Magn. Mater., 234 (2001) 313-319.
[9]
J. Gao, T. Volkmann, D. M. Herlach, J. Mater. Research, 16 (2011) 2562-2567.
[10]
W. F. Li, T. Ohkubo, K. Hono, M. Sagawa, J. Magn. Magn. Mater., 321 (2009) 1100-1105.
[11]
H. Sepehri-Amin, Y. Une, T. Ohkubo, K. Hono, M. Sagawa, Scripta Materialia, 65 (2011) 396-399.
[12]
C. Wang, M. Yan, Mater. Sci. Eng.: B, 128 (2006) 216-219.
[13]
J. Gao, B. Wei, J. Alloy Compd., 285 (1999) 229-232.
[14]
E. J. Lavernia, T. S. Srivatsan, J. Mater. Sci., 45 (2009) 287-325.
[15]
L. A. Jacobson, J. McKittrick, Mater. Sci. Eng. R: Reports, 11 (1994) 355-408.
[16]
M. Gögebakan, O. Uzun, T. Karaaslan, M. Keskin, J. Mater. Proces. Techn., 142 (2003) 87-92.
[17]
M. Kramer, L. Lewis, L. Fabietti, Y. Tang, W. Miller, K. Dennis, R. McCallum, J. Magn. Magn. Mater., 241 (2002) 144-155.
[18]
S. Sarafrazian, A. Ghasemi, M. Tavoosi, J. Magn. Magn. Mater., 402 (2016) 115-123.
[19]
K. Simeonidis, C. Sarafidis, E. Papastergiadis, M. Angelakeris, I. Tsiaoussis, O. Kalogirou, Intermetallics, 19 (2011) 589-595.
[20]
M. Srinivas, B. Majumdar, G. Phanikumar, D. Akhtar, Metall. Mater. Trans. B: Process Metall. Mater. Proces. Sci., 42 (2011) 370-379.
[21]
S. P. H. Marashi, A. Abedi, S. Kaviani, S. H. Aboutalebi, M. Rainforth, H. A. Davies, J. Phys. D: Applied Physics, 42 (2009) 115410.
[22]
C. Wang, M. Yan, Mater. Sci. Eng.: B, 164 (2009) 71-75.
[23]
J. Gao, T. Volkmann, D. Herlach, Acta materialia, 50 (2002) 3003-3012.
[24]
X. Dong, L. He, P. Li, J. Alloy Compd., 612 (2014) 20-25.
[25]
E. A. O. M. H. Saleh, F. Ismail, P. Hussain, M. Mohammad, Solid State Sci. Tech., 13 (2005) 268-275.
[26]
M. Mohammed, in: Proceedings of 17th International Conference on Composite/Nano Engineering, Hawaai, USA, 2009.
[27]
A. P. Jadhav, H. Ma, D. S. Kim, Y. K. Baek, C. J. Choi, Y. S. Kang, Bulletin of the Korean Chemical Society, 35 (2014) 886-890.
[28]
S. Ozawa, M. Li, S. Sugiyama, I. Jimbo, S. Hirosawa, K. Kuribayashi, Mater. Sci. Eng.: A, 382 (2004) 295-300.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186