Synthesis and Properties for Benzotriazole Nitrogen Oxides (BTzO) and Tris[1,2,4]triazolo[1,3,5]triazine Derivatives
International Journal of Materials Science and Applications
Volume 7, Issue 2, March 2018, Pages: 49-57
Received: Oct. 7, 2017; Accepted: Oct. 23, 2017; Published: Mar. 26, 2018
Views 335      Downloads 19
Authors
Yanyang Qu, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
Qun Zeng, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
Jun Wang, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
Guijuan Fan, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
Jinglun Huang, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
Gaungchen Yang, Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
Article Tools
Follow on us
Abstract
Herein we first report a novel method of synthesis fused ring nitrogen-enriched compounds by intramolecular cyclization reaction. Some of them were characterized by IR, 1H and 13C NMR spectroscopy. Most of them exhibit outstanding positive heat of formation (155-376 kJ/mol). Densities of these compounds fall in the range between 1.7321-1.8847 g.cm-1, which places them in a class of relatively dense energetic materials. Their physical properties were evaluated by Gaussian 09, and EXPLO5 6.02 calculations. Their detonation velocities and pressures were calculated to fall in the range of 6713-8441 m.s-1 and 14.47-30.61 Gpa.
Keywords
Fused Heterocycles, 1,2,4-triazoles, tris[1,2,4]triazolo[1,3,5]triazine, 1,3,5-triazines, Benzotriazole Nitrogen Oxides, Synthetic Methods
To cite this article
Yanyang Qu, Qun Zeng, Jun Wang, Guijuan Fan, Jinglun Huang, Gaungchen Yang, Synthesis and Properties for Benzotriazole Nitrogen Oxides (BTzO) and Tris[1,2,4]triazolo[1,3,5]triazine Derivatives, International Journal of Materials Science and Applications. Vol. 7, No. 2, 2018, pp. 49-57. doi: 10.11648/j.ijmsa.20180702.13
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
a) H. X. Gao and J. M. Shreeve, Chem. Rev. 2011, 111 (11), 7377–7436; b) J. H. Zhang, C. L. He, D. A. Parrish and J. M. Shreeve, Chem.-Eur. J., 2013, 19 (27), 8929–8936; c) P. Yin, D. A. Parrish and J. M. Shreeve, J. Am. Chem. Soc., 2015, 137, 4778–4786; d) A. Hammerl, T. M. Klapotke, R. Rocha, Eur J Inorg Chem, 2006, 16, 2210–2228; f) T. M. Klapötke, M. Q. Kurz, P. C. Schmid and J. Stierstorfer, J. Energ. Mater., 2015, 33, 191–201; g) P. Yin, J. M. Shreeve, Advances in Heterocyclic Chemistry, 2017, 121, 89–131.
[2]
Choose some of examples: a) G. K. Khisamutdinov, V. L. Korolev, T. N. Parkhomenko, V. M. Sharonova, E. S. Artemeva, I. S. Abdrakhmanov, S. P. Smirnov and B. I. Ugrak, Russ. Chem. Bull., 1993, 42 (10), 1700–1702; b) A. B. Sheremetev and I. L. Yudin, Usp. Khim., 2003, 72 (1), 93–107; c) Y. C. Li, C. Qi, S. H. Li, H. J. Zhang, C. H. Sun, Y. Z. Yu and S. P. Pang, J. Am. Chem. Soc., 2010, 132 (35), 12172–12173; d) A. A. Dippold and T. M. Klapötke, J. Am. Chem. Soc., 2013, 135 (26), 9931–9938; e) L. Vereshchagin, O. N. Verkhozina, F. A. Pokatilov, et al. Chemistry of Heterocyclic Compounds, 2010, 46, 206–211; f) V. Kizhnyaev, F. Pokatilov, L. Vereshchagin, et al. Russian Journal of Applied Chemistry, 2009, 82, 1769–1775; g) M. C. Schulze, B. L. Scott and D. E. Chavez, J. Mater. Chem. A, 2015, 3, 17963–17965.
[3]
a) K. A. Hofmann and O. Erhart, Chem. Ber., 1912, 45, 2731–2740; b) D. W. Kaiser, G. A. Peters, and V. P. Wystrach, J. Org. Chem., 1953, 18, 1610–1615; c) V. A. Tartakovsky, A. E. Frumkin, A. M. Churakov, and Yu. A. Strelenko, Russian Chemical Bulletin, International Edition, 2005, 54, 3, 719–725; d) C. J. Snyder, T. W. Myers, D. E. Chavez, J. M. Veauthier, and R. J. Scharff, New Trends in Research of Energetic Materials, Czech Republic, 2016, 974–978.
[4]
R. Huisgen, H. V. Sturm, and M. Seidel, Chem. Ber., 1961, 94, 1555–1562.
[5]
a) A. K. Zelenin, M. L. Trudell, J. Heterocycle Chem. 1998, 35, 151–154; b) L. V. Batog, L. S. Konstantinova, and V. Yu. Rozhko, Russian Chemical Bulletin, International Edition, 2005, 54, 8, 1915–1922.
[6]
a) C. L. He, J. H. Zhang, D. A. Parrish and J. M. Shreeve, J. Mater. Chem. A. 2013, 1, 2863–2868; b) T. M. Klapötke, C. Pflüger, M. Snćeska, New Trands in Research of Energetic Materials, Czech Republic, 2014, 754–768.
[7]
a) P. J. Linstrom and W. G. Mallard, NIST Chemistry WebBook. (NIST, Gaithersburg, MD, 2005); R. L. Simpson, P. A. Urtiew, D. L. Ornellas, G. L. Moody, K. F. J. Scribner and D. M. Hoffman, Propellants Explosives Pyrotechnics, 1997, 22 (5), 249–255; c) Q. Wu, W. H. Zhu and H. M. Xiao, RSC Adv., 2014, 4 (8), 3789–3797; d) Q. H. Zhang, J. H. Zhang, X. J. Qi and J. M. Shreeve, J. Phys. Chem. A., 2014, 118 (45), 10857–10865.
[8]
a) Q. Zeng, Y. Y. Qu, J. S. Li, H. Huang, RSC Adv., 2016, 6, 5419–5427; b) Q. Zeng, Y. Y. Qu, J. S. Li and H. Huang, RSC Adv., 2016, 6, 77005–77012.
[9]
a) P. Politzer, J. Martinez, J. S. Murray and M. C. Concha, Mol. Phys., 2010, 108 (10), 1391–1396; b) B. M. Rice and E. F. C. Byrd, J. Comput. Chem., 2013, 34 (25), 2146–2151.
[10]
E. F. C. Byrd and B. M. Rice, J. Phys. Chem. A., 2006, 110 (3), 1005–1013.
[11]
P. Politzer, J. S. Murray, M. E. Grice, M. Desalvo and E. Miller, Mol. Phys., 1997, 91 (5), 923–928.
[12]
a) B. M. Rice and E. F. C. Byrd, J. Comput. Chem., 2013, 34 (25), 2146–2151; b) M. Pospisil, P. Vavra, M. C. Concha, J. S. Murray and P. Politzer, Journal of Molecular Modeling, 2010, 16 (5), 895–901.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931