| Peer-Reviewed

Effect of the Etching on Chemical Mechanical Planarization of the Selective Layer Surface

Received: 19 June 2017    Accepted: 28 June 2017    Published: 17 July 2017
Views:       Downloads:
Abstract

Among other the planarization technologies, Chemical mechanical planarization (CMP) is the unique global planarization technology, which makes it be continuously investigated. The planarization (polishing) and micromachining are of considerable interest to different engineering fields, such as the friction couples that function with the selective transfer and is used to remove excess of metal, obtained in process of selective transfer and for the understanding of planarization and micromachining. For an effective planarization, it is necessary to minimize the surface defects while attaining a good planarity with optimal material removal rate (MRR). These requirements can be met by controlling the chemical and mechanical interactions during the polishing process, or by engineering the slurry chemistry, particles properties, and stability. Effect of the etching during CMP process of the selective layer surface are presented in this paper. To optimize the process of selective layer CMP a blanket selective layer samples were polished with, colloidal silica-based slurry which contains a citric acid and an oxidizer (H2O2). Surface studies using X-ray photoelectron spectroscopy (XPS) were performed on selective layer samples after chemical etching in order to determine the effect that different polishing parameters (i.e., pH and H2O2 concentration) have on the selective layer surface. Then, the samples were passively soaked in an acidic slurry mixture containing different concentrations of H2O2 to determine how the chemical action alone affects the removal of the selective layer. The etching results revealed that a cuprous oxide (Cu2O) forms on the surface of the etched metallic selective layer while polished samples showed CuO and Cu(OH)2. The effect of these selective layer oxide films on the removal of the selective layer in passive etching and CMP is discussed.

Published in International Journal of Materials Science and Applications (Volume 6, Issue 4)
DOI 10.11648/j.ijmsa.20170604.15
Page(s) 193-199
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Selective Layer, Etching, Chemical Mechanical Planarization, Slurry, X-Ray Photoelectron Spectroscopy

References
[1] F. Ilie, Study tribological of thin superficial layers formed in the friction couples through selective transfer, 2002 (Technical Publishing House, Bucharest).
[2] F. Ilie and C. Tita, Comparative analysis of tribological performances of materials that can achieve thin layers from selective transfer. J. Balkanical Tribol. Assoc., 2006, 12(4), 404–411.
[3] D. N. Garkunov, Erhonung der Verschleissfestigkeit auf der selektiven Ubertragung, 1981 (VEB Verlag Technik, Berlin).
[4] S. P. Murarka, Chemical-Mechanical Polishing - Fundamentals and Challenges, edited by S. V. Babu, S. Danyluk, M. I. Krishnan, and M. Tsujimura, Mater. Res. Soc. Proc. 566 (2000), p. 3.
[5] J. Hernandez, P. Wrschka, and G. S. Oehrleinc, Surface Chemistry Studies of Copper Chemical Mechanical Planarization, Journal of The Electrochemical Society, 148(7), G389-G397 (2001).
[6] F. Ilie and G. Ipate, Chemical-Mechanical Impact of Nanoparticles and pH Effect of the Slurry on the CMP of the Selective Layer Surfaces, Lubricants, 5(2), 15 (2017).
[7] M. Bielman, Chemical Mechanical Polishing of Tungsten, University of Florida Master Thesis (1998).
[8] M. S. Gaither, R. S. Gates, R. Kirkpatrick, R. F. Cook, and F. W. Del Rio, Etching Process Effects on Surface Structure, Fracture Strength, and Reliability of Single-Crystal Silicon Theta-Like Specimens, Journal of Micro-electromechanical Systems, 22(3), 589-602 (2013).
[9] F. Ilie and T. Laurian, Investigation into the Effect of Concentration of Benzotriazole on the Selective Layer Surface in the Chemical Mechanical Planarization Process, Journal of Materials Engineering and Performance, 24(12), 4919–4927 (2015).
[10] V. Brusic, M. Frisch, B. Eldrige, F. P. Novak, F. B. Kaufman, B. Rush, and G. S. Frankel, J. Copper corrosion with and without inhibitors, Electrochem. Soc., 138, 2253 (1991).
[11] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 1st ed., Pergamon Press Ltd., Oxford (1966).
[12] N. S. Mcintyre, S. Sunder, D. W. Shoesmith and F. W. Stanchell, Chemical information from XPS - applications to the analysis of electrode surfaces, J. Vac. Sci. Technol., 18, 714 (1981).
[13] S. K. Chawla, B. I. Rickett, N. Sankarraman, and J. H. Payer, An X-ray photo-electron spectroscopic investigation of the air-formed film on copper, Corros. Sci., 33, 1617 (1992).
[14] T. Du, A Vijayakumar, V Desai, Effect of hydrogen peroxide on oxidation of copper in CMP slurries containing glycine and Cu ions, Electrochimica Acta,. 49 (25), 4505–4512 (2004).
[15] Y. Xie and B. Bhushan, Effects of particle size, polishing pad and contact pressure in free abrasive polishing, Wear, 200, p. 281 (1996).
[16] J. Luo, D. A. Dornfeld, Effects of Abrasive Size Distribution in Chemical Mechanical Planarization: Modeling and Verification, IEEE Transactions on Semiconductor Manufacturing, vol. 16, no. 3, 469 (2003).
[17] M. Colic, D. W. Fuerstenau, Influence of the dielectric constant of the media on oxide stability in surfactant solutions, Langmuir, 13, 6644 (1997).
[18] M. J. Solomon, T. Saeki, M. Wan, P. J. Scales, D. V. Boger, H. Usui, Effect of adsorbed surfactants on the rheology of colloidal zirconia suspensions, Langmuir, 15, 20 (1999).
[19] L. K. Koopal, T. Goloub, A. deKaiser, M. P. Sidorova, The effect of cationic surfactants on wetting, colloid stability and flotation of silica, Colloids Surf., 151, 15 (1999).
[20] K. E. Bremmel, G. J. Jameson, S. Biggs, Adsorption of ionic surfactants in particulate system: flotation, stability, and interaction forces, Colloids Surf., 146, 755 (1999).
[21] C. R. Evanko, D. A. Dzombak, J. W. Novak, Influence of surfactant addition on the stability of concentrated alumina disspersions in water, Colloids Surf., 110, 219 (1996).
[22] J. J. Adler, P. K. Singh, A. Patist, Y. I. Rabinovich, D. O. Shah and B. M. Moudgil., Correlation of particulate dispersion stability with the strength of self-assambled surfactant films, Langmuir, 16, 7255-7262 (2000).
[23] G. B. Basim, I. U. Vakarelski, B. M. Moudgil, Role of interaction forces in controlling the stability and polishing performance of CMP slurries, Journal of Colloid and Interface Science, vol. 263 (2), 506–515 ( 2003).
[24] M. C. Pohl, D. A. Griffith, The importance of particle size to the performance of abrasive particles in the CMP processes, J. Electron. Mater., vol. 25, pp. 1612–1616 (1996).
[25] G. B. Basim, J. J. Adler, U. Mahajan, R. K. Singh, Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects, J. Electrochem. Soc., vol. 147(9), 3523-3528 (2000).
Cite This Article
  • APA Style

    Filip Ilie. (2017). Effect of the Etching on Chemical Mechanical Planarization of the Selective Layer Surface. International Journal of Materials Science and Applications, 6(4), 193-199. https://doi.org/10.11648/j.ijmsa.20170604.15

    Copy | Download

    ACS Style

    Filip Ilie. Effect of the Etching on Chemical Mechanical Planarization of the Selective Layer Surface. Int. J. Mater. Sci. Appl. 2017, 6(4), 193-199. doi: 10.11648/j.ijmsa.20170604.15

    Copy | Download

    AMA Style

    Filip Ilie. Effect of the Etching on Chemical Mechanical Planarization of the Selective Layer Surface. Int J Mater Sci Appl. 2017;6(4):193-199. doi: 10.11648/j.ijmsa.20170604.15

    Copy | Download

  • @article{10.11648/j.ijmsa.20170604.15,
      author = {Filip Ilie},
      title = {Effect of the Etching on Chemical Mechanical Planarization of the Selective Layer Surface},
      journal = {International Journal of Materials Science and Applications},
      volume = {6},
      number = {4},
      pages = {193-199},
      doi = {10.11648/j.ijmsa.20170604.15},
      url = {https://doi.org/10.11648/j.ijmsa.20170604.15},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20170604.15},
      abstract = {Among other the planarization technologies, Chemical mechanical planarization (CMP) is the unique global planarization technology, which makes it be continuously investigated. The planarization (polishing) and micromachining are of considerable interest to different engineering fields, such as the friction couples that function with the selective transfer and is used to remove excess of metal, obtained in process of selective transfer and for the understanding of planarization and micromachining. For an effective planarization, it is necessary to minimize the surface defects while attaining a good planarity with optimal material removal rate (MRR). These requirements can be met by controlling the chemical and mechanical interactions during the polishing process, or by engineering the slurry chemistry, particles properties, and stability. Effect of the etching during CMP process of the selective layer surface are presented in this paper. To optimize the process of selective layer CMP a blanket selective layer samples were polished with, colloidal silica-based slurry which contains a citric acid and an oxidizer (H2O2). Surface studies using X-ray photoelectron spectroscopy (XPS) were performed on selective layer samples after chemical etching in order to determine the effect that different polishing parameters (i.e., pH and H2O2 concentration) have on the selective layer surface. Then, the samples were passively soaked in an acidic slurry mixture containing different concentrations of H2O2 to determine how the chemical action alone affects the removal of the selective layer. The etching results revealed that a cuprous oxide (Cu2O) forms on the surface of the etched metallic selective layer while polished samples showed CuO and Cu(OH)2. The effect of these selective layer oxide films on the removal of the selective layer in passive etching and CMP is discussed.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Effect of the Etching on Chemical Mechanical Planarization of the Selective Layer Surface
    AU  - Filip Ilie
    Y1  - 2017/07/17
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ijmsa.20170604.15
    DO  - 10.11648/j.ijmsa.20170604.15
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 193
    EP  - 199
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20170604.15
    AB  - Among other the planarization technologies, Chemical mechanical planarization (CMP) is the unique global planarization technology, which makes it be continuously investigated. The planarization (polishing) and micromachining are of considerable interest to different engineering fields, such as the friction couples that function with the selective transfer and is used to remove excess of metal, obtained in process of selective transfer and for the understanding of planarization and micromachining. For an effective planarization, it is necessary to minimize the surface defects while attaining a good planarity with optimal material removal rate (MRR). These requirements can be met by controlling the chemical and mechanical interactions during the polishing process, or by engineering the slurry chemistry, particles properties, and stability. Effect of the etching during CMP process of the selective layer surface are presented in this paper. To optimize the process of selective layer CMP a blanket selective layer samples were polished with, colloidal silica-based slurry which contains a citric acid and an oxidizer (H2O2). Surface studies using X-ray photoelectron spectroscopy (XPS) were performed on selective layer samples after chemical etching in order to determine the effect that different polishing parameters (i.e., pH and H2O2 concentration) have on the selective layer surface. Then, the samples were passively soaked in an acidic slurry mixture containing different concentrations of H2O2 to determine how the chemical action alone affects the removal of the selective layer. The etching results revealed that a cuprous oxide (Cu2O) forms on the surface of the etched metallic selective layer while polished samples showed CuO and Cu(OH)2. The effect of these selective layer oxide films on the removal of the selective layer in passive etching and CMP is discussed.
    VL  - 6
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Machine Elements and Tribology, Polytechnic University of Bucharest, Bucharest, Romania

  • Sections