Logarithmic Running of ‘t Hooft-Polyakov Monopole to Dark Energy
International Journal of High Energy Physics
Volume 1, Issue 1, April 2014, Pages: 1-5
Received: Jan. 28, 2014; Published: Mar. 20, 2014
Views 8364      Downloads 176
Author
M. S. El Naschie, Dept. of Physics, University of Alexandria, Alexandria, Egypt
Article Tools
PDF
Follow on us
Abstract
The paper presents a particle physicists’ interpretation of the mathematical abstract concept of a five dimensional empty set as the source of dark energy and dark matter. It turns out that the simplest alternative physical interpretation at least from the view point of the GUT unification of fundamental interaction is the theoretically well established but experimentally never found yet ‘t Hooft-Polyakov magnetic giant monopole with the predicted huge mass of ten to the power of 16 Gev. In fact it will be shown here using exact renormalization equations that running the preceding energy logarithmically leads to a prediction of the ordinary and the total dark energy density of the cosmos in complete agreement with our earlier result E(O) = mc2/22 and E(D) = mc2(21/22) based on the afore mentioned set theoretical concepts as well as with all the relatively recent cosmological measurements. The decisive steps in the present derivation consists of two realizations. First and to our deepest surprise and delight, E =γmc2 = mc2 is actually a unification formula uniting classical, relativistic and quantum mechanics where γ= 1 corresponds to a 100% energy density. Second and also not expectedly, the logarithmic running of ‘t Hooft-Polyakov’s monopole energy leads to a reduction factor γ= 1/λwhere λ=1/2 ln (M(monopole))/(m(electron))=22.18033989, in full agreement with our previous results using entirely different approaches. Finally the results are validated using ‘t Hooft’s dimensional regularization D = 4 ∈ by setting = 2∅^5 where ∅^5 is Hardy’s quantum entanglement and φ=2/ √5+1.
Keywords
Dark energy, Grand Unification, Giant ‘T Hooft-Polyakov Monopole, Quantum Relativity Renormalization Equations, Fractal Spacetime, Quantum Field Theory, Super Symmetry, Dark Matter, Planckton, ‘T Hooft Renormalization
To cite this article
M. S. El Naschie, Logarithmic Running of ‘t Hooft-Polyakov Monopole to Dark Energy, International Journal of High Energy Physics. Vol. 1, No. 1, 2014, pp. 1-5. doi: 10.11648/j.ijhep.20140101.11
References
[1]
A.G. Riess et al, Observation evidence from supernova for an accelerating universe and a cosmological constant. The Astronomical Journal. Vol. 116, pp. 1009, 1998. Doi: 10.1086/300499.
[2]
S. Perlmutter et al, Supernova cosmology project collaboration. "Measurement of omega and lambda from 42 high-redshift supernova. The Astrophysical Journal, Vol. 517, No. 2, 1999, pp. 565-585.
[3]
C.L. Bennett, WMAP Collaboration. Astrophys. J. Suppl,Vol. 148, No. 1, 2003, [astro-ph/0302207].
[4]
B.P. Schmidt et al, The distance to five type II supernova using the expanding photosphere method and the value of Ho. The Astrophys. J., Vol. 432, 1994, pp. 42-48.
[5]
T. Padmanabhan, Dark Energy: The cosmological challenge of the millennium. arXiv: astro-ph/0411044V1, 2 Nov 2004.
[6]
M.S. El Naschie, A resolution of cosmic dark energy via a quantum entanglement relativity theory. J. Quantum Info. Sci., Vol. 3, No. 1, 2013, pp. 23-26.
[7]
M.S. El Naschie, A Rindler-KAM spacetime geometry and scaling the Planck scale solves quantum relativity and explains dark energy. Int. J. of Astron. and Astrophys.Vol. 3, No. 4, 2013, pp. 483-493.
[8]
M.S. El Naschie, From Yang-Mills photon in curved spacetime to dark energy density. J. Quantum Info. Sci., Vol. 3, No. 4, 2013, pp. 121-126.
[9]
M.S. El Naschie and M.A. Helal, Dark energy explained via the Hawking-Hartle quantum wave and the topology of cosmic crystallography. Int. J. Astron. & Astrophys, Vol. 3, 3, 2013, pp. 318-343.
[10]
M.S. El Naschie, "Topological-geometrical and physical interpretation of the dark energy of the cosmos as a ‘halo’ energy of the Schrödinger quantum wave." J. Mod. Phys., Vol. 4 , No. 5, 2013, pp. 591-596.
[11]
L. Marek-Crnjac and Ji-Huan He, An invitation to El Naschie’s theory of Cantorian spacetime and dark energy. Int. J. of Astron. & Astrophys., Vol. 3, 2013, pp. 464-471.
[12]
M.A. Helal, L. Marek-Crnjac and Ji-Huan He, The three page guide to the most important results of M.S. El Naschie’s research in E-infinity and quantum physics and cosmology. Open J. Microphys., Vol. 3, No. 4, 2013, pp. 141-145.
[13]
M.S. El Naschie, Experimentally based theoretical arguments that Unruh’s temperature, Hawkings’s vacuum fluctuation and Rindler’s wedge are physically real. American J. of Modern Phys., Vol. 2, No. 6, 2013, pp. 57-361.
[14]
L. Marek-Crnjac, Modification of Einstein’s E = mc2 to E = 1/22 mc2. American J. Modern Phys., Vol. 2, No. 5, 2013, pp. 255-263.
[15]
L. Marek-Crnjac and M.S. El Naschie, Chaotic fractal tiling for the missing dark energy and Veneziano model. Appl. Math., Vol. 4, No. 11B, 2013, pp. 22-29.
[16]
Ji-Huan He and L. Marek-Crnjac, Mohamed El Naschie’s revision of Albert Einstein’s E = mc2: A definite resolution of the mystery of the missing dark energy of the cosmos. Int. J. Modern Nonlinear Sci. & Application., Vol. 2, No. 1, 2013, pp. 55-59.
[17]
M.S. El Naschie, Dark energy via quantum field theory in curved spacetime. J. Mod. Phys. & Appli. Vol. 2, 2014, pp.
[18]
Ji-Huan He and L. Marek-Crnjac, The quintessence of El Naschie’s theory of fractal relativity and dark energy. Fractal Spacetime & Noncommutative Geometry in Quantum & High Energy Phys., Vol. 3, No. 2, 2013, pp. 130-137.
[19]
M.S. El Naschie, A unified Newtonian-relativistic quantum resolution of the supposedly missing dark energy of the cosmos and the constancy of the speed of light. Int. J. Modern Nonlinear Sci. & Application., Vol. 2, No. 1, 2013, pp. 43-54.
[20]
F. Hehl, Space-Time as Generalized Cosserat Coninuum. In "Mechanics of Generalized Continua". Editor E. Kronev., Springer Verlag, Berlin, 1968. pp. 347-349.
[21]
M.S. El Naschie, Transfinite harmonization by taking the dissonance out of the quantum field symphony. Chaos, Solitons & Fractals, Vol. 36, No. 4, 2008, pp. 781-786.
[22]
M.S. El Naschie, Extended renormalization group analysis for quantum gravity and Newton’s gravitation constant. Chaos, Solitons & Fractals, Vol. 35, No. 3, 2008, pp. 425-431.
[23]
M.S. El Naschie, Asymptotic freedom and unification in a golden quantum field theory. Chaos, Solitons & Fractals, Vol. 36, No. 3, 2008, pp. 521-525.
[24]
E. Goldfain, Renormalization group and the emergence of random fractal topology in quantum field theory. Chaos, Solitons & Fractals, Vol. 19, No. 5, 2004, pp. 1023-1030.
[25]
M.S. El Naschie, Towards a quantum golden field theory. Int. J. of Nonlinear Sci. & Numerical simulation., Vol. 8, No. 4, 2007, pp. 477-482.
[26]
M.S. El Naschie, A review of E-infinity and the mass spectrum of high energy particle physics. Chaos, Solitons & Fractals, Vol. 19, No. 1, 2004, pp. 209-236.
[27]
M.S. El Naschie, The theory of Cantorian spacetime and high energy particle physics (an informal review). Chaos, Solitons & Fractals, Vol. 41, No. 5, 2009, pp. 2635 – 2646.
[28]
M.S. El Naschie, SO (10) grand unification in a fuzzy setting. Chaos, Solitons & Fractals, Vol. 32, No. 3, 2007, pp. 958-961.
[29]
M.S. El Naschie, SU(5) grand unification in a transfinite form. Chaos, Solitons & Fractals, Vol. 32, No. 2, 2007, pp. 370-374.
[30]
P. Langacker, Grand unification. Scholarpedia 7(10):11419, 2012. (See in particular Fig. 3).
[31]
D. Gross and M.J. Perry, Magnetic Monopoles in Kaluza-Klein Theories. Nuclear Phys. Vol. B226, 1983, pp. 29-48.
[32]
M.S. El Naschie, Bounds on the number of possible Higgs particles using grand unification and exceptional Lie groups. Chaos, Solitons & Fractals, Vol. 37, No. 3, 2008, pp. 633-637.
[33]
J.R. Ellis, Particle physicists’ candidates for dark matter. Phil. Trans. R. Soc. London A, Vol. 320(1556), 1986, pp. 475-485.
[34]
Yong Tao, The validity of dimensional regularization method on fractal spacetime. Journal of Appl. Math. 2013. arXiv: http://dx.doi.org/10.1155/2013/308691.
[35]
A. Elokaby: Knot wormholes and the dimensional invariant exceptional Lie groups and Stein sspace hierarchies. Chaos, Solitons & Fractals, Vol. 41, No. 4, 2009, pp. 1616 - 1618.
[36]
M.J. Duff, The World in Eleven Dimensions. Inst. of Phys. Publications, Bristol 1999.
[37]
G. ‘t Hooft, A Confrontation With Infinity. In "Frontiers of Fundamental Physics" 4. Editors B. Sidharth and M. Altaisky. Kluwer-Plenum, New York (2001), pp. 1-12.
[38]
M.S. El Naschie, ‘t Hooft’s dimensional regularization implies transfinite Heterotic string theory and dimensional transmutation. In "Frontiers of Fundamental Physics" 4. Editors B. Sidharth and M. Altaisky. Kluwer-Plenum, New York (2001), pp. 81-86.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186