Quark–Quark of Swap Electric Charge Bound State
International Journal of High Energy Physics
Volume 2, Issue 4-1, August 2015, Pages: 1-7
Received: Apr. 15, 2015; Accepted: Apr. 16, 2015; Published: Jun. 9, 2015
Views 3007      Downloads 59
Author
E. Koorambas, 8A Chatzikosta, 11521 Ampelokipi, Athens, Greece
Article Tools
Follow on us
Abstract
We test the Electric Charged Swap (ECS) symmetry in the case of quarks. We propose a quark (q)- and an ECS-quark (q῀)-bound state, qq῀. We explain the electrically charged charmonium Z+c (3, 9) meson as a charm quark (c)- and charm ECS-quark (c῀)- nonrelativistic bound state (cc῀). We predict that J/ψ and π+ mesons are the decay products of a Z+c (3, 9), as it has been recently observed at the Beijing Electron Positron Collider (BES) III. Furthermore, from the charm ECS-quark (c῀) of mass 2,3GeV we predict two new mesons, an electrically charged charmed meson D¯*+(zm) and a neutral charmed meson D*0(zm).
Keywords
Group Theory, Exotic Mesons, Hypothetical Particles
To cite this article
E. Koorambas, Quark–Quark of Swap Electric Charge Bound State, International Journal of High Energy Physics. Special Issue:Symmetries in Relativity, Quantum Theory, and Unified Theories. Vol. 2, No. 4-1, 2015, pp. 1-7. doi: 10.11648/j.ijhep.s.2015020401.11
References
[1]
M. Ablikim et al. [BESIII Collaboration].Phys. Rev. Lett. 110, 252001 (2013), arXiv:1303.5949 [hep-ex],(2013).
[2]
S. K. Choi et al. [BELLE Collaboration]. Phys. Rev. Lett. 100, 142001 (2008), [arXiv:0708.1790 [hep-ex].
[3]
R. Mizuk et al. [Belle Collaboration], Phys. Rev. D 78, 072004 (2008), [arXiv:0806.4098hep-ex].
[4]
M.B. Voloshin. arXiv:1304.0380 [hep-ph],(2013).
[5]
M. B. Voloshin, L. B. Okun and, JETP Lett. 23, 333 (1976) [Pisma Zh. Eksp. Teor.Fiz. 23, 369 (1976)].
[6]
M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008), [arXiv:0711.4556 hep-ph].
[7]
S. Dubynskiy, M. B. Voloshin and, Phys. Lett. B 666, 344 (2008), [arXiv:0803.2224hep-ph].
[8]
L. Maiani et al. Phys. Rev. D 71, 014028 (2005).
[9]
E. Koorambas, Commun. Theor. Phys. 60. 5 (2013) 561-570, hal-00747307v1 [hep-th] (2012, October).
[10]
A-Wollmann Kleinert, F. Bulnes. Journal on Photonics and Spintronics, 2 (1) 2013.
[11]
A.M. Polykov. Phys.Lett.B.103 (1981).R.J. Szabo. arXiv:hep-th/0207142 (2002).
[12]
A. Giveon, D. Kutasov. Reviews of Modern Physics, Vol. 71, No. 4 (1999).
[13]
J. Polchinski. Phys. Rev. Lett. 75, (1995) 4724.
[14]
J. Polchinski. arXiv: hep-th/9611050 (1996).
[15]
G. Fubini. Atti Istit.Veneto, 63 (1904), 502-513.
[16]
J. Beringer et al. (PDG), PR D86, 010001 (2012).
[17]
Wen- Long Lin. Chinese Journal of Physics 6, (4), 1978.
[18]
F. Halzen, A.D. Martin. Quarks and Leptons: An Introduction Course in Modern Particle Physics (John Wiley & Son, New York USA 1984), 64,251-252,292-301.
[19]
S. Weinberg. Phys. Rev. Lett. 19, 1264 (1976).
[20]
S. Weinberg. Phys. Rev. D 5, 1412 (1972).
[21]
A. Salam. In: Svartholm, N. (ed.) Elementary Particle Theory: Relativistic Groups and Analyticity Nobel Symposium, vol. 8. Almqvist and Wiksell, Stockholm (1968).
[22]
S. Glashow, Nucl. Phys. 22, 579 (1961).
[23]
N. Cabibbo (1963). "Unitary Symmetry and Leptonic Decays". Physical Review Letters 10 (12): 531–533.
[24]
B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 79 (2009) 112001.
[25]
S. Dürr, Z. Fodor, J. Frison et al. 2008 Ab Initio Determination of Light Hadron Masses Science 322 5905: 1224.
[26]
A. Bazavov et al. 2010 Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks Reviews of Modern Physics 82: 1349-1417.
[27]
A. Baker, “Simplicity”, Stanford Encyclopedia of Philosophy California Stanford University (2010)
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186