The Physics of Mass Gap Problem in the General Field Theory Framework
International Journal of High Energy Physics
Volume 2, Issue 4-1, August 2015, Pages: 104-111
Received: Jun. 27, 2015; Accepted: Jun. 29, 2015; Published: Aug. 7, 2015
Views 3247      Downloads 57
Author
E. Koorambas, Physics Department, National Technical University, Zografou, Athens, Greece
Article Tools
Follow on us
Abstract
We develop the gauge theory introduced by Ning Wu with two Yang-Mills fields adjusted to make the mass term invariant. In the specific representation there arise quantum massive and classical massless no-Abelian vector modes and the gauge interaction terms. The suggested model will return into two different Yang-Mills gauge field models. Next, we focus on calculating `the meet of the propagators' of those quantum massive and classical massless vector fields with respects to the double Yang-Mills limit. We demonstrate that our proposed version of the Quantum Chromodynamics (QCD) predicts mass gap Δ > 0 for the compact simple gauge group SU (3). This provides a solution to the second part of the Yang-Mills problem.
Keywords
Gauge field Theories, Quantum Chromodynamics, Yang-Mills Problem
To cite this article
E. Koorambas, The Physics of Mass Gap Problem in the General Field Theory Framework, International Journal of High Energy Physics. Special Issue: Symmetries in Relativity, Quantum Theory, and Unified Theories. Vol. 2, No. 4-1, 2015, pp. 104-111. doi: 10.11648/j.ijhep.s.2015020401.18
References
[1]
Young.C.N, Mills.R.L 1954 Conservation of isotopic spin and isotopic gauge invariance Phys.Rev. 96 191-195.
[2]
Jaffe.A, Witten.E, 2000 Quantum Yang-Mills Theory www.claymath.org/millennium/Yang-MillsTheory/yangmills.pdf.
[3]
Creutz.M 1980 Monte Carlo Study of Quantized SU (2) Gauge Theory, Phys. Rev. D21 2308–2315.
[4]
Wilson.K.G 1975 Quarks and strings on a lattice, in New Phenomena In Subnuclear Physics, Proceedings of the 1975 International School of Subnuclear Physics, Erice, Sicily, ed. A.Zichichi, Plenum Press, New York .
[5]
Wu.N 2003 Gauge Model with Massive Gravitons Preprint hep-th/0307003.
[6]
Wu.N”Quantum Gauge Theory of Gravity” 2002 Devision of Particles and Fields Aps Williamsburg, Virgia USA.
[7]
Wu.N Gauge Theory of Gravity 2001 Preprint hep-th/0109145.
[8]
Wu.N Renormalizable Quantum Gauge Theory of Gravity 2002 Preprint hep-th/0207254.
[9]
Wu.N Commun.Theor.Phys 2001 36 169.
[10]
.Wu.N Commun.Theor.Phys 2002 38 577-582.
[11]
Wu.N Commun.Theor.Phys 2002 38 151-156.
[12]
Wu.N 1998 Some discussions on strong interaction Preprint hep-ph/9802297.
[13]
Caso.C et al 1998 Particle Data Group, E. Phys. J. C3. 1.
[14]
Dokshitzer.Y 1998 Talk presented at XXIXth International Conference on High Energy Physics, ICHEP98, Vancouver, CAS.
[15]
Ellis.J, Kunszt.Z, Soper.D 1990 Phys. Rev. Lett. 64. 2121.
[16]
Goldstone.J 1961 Nov.Cim.19 154.
[17]
Namnu.Y, Lasinio.G.J 1961 Phys.Rev.122 34.
[18]
Goldstone.J, Salam.A, Weinberg.S 1962 Phys.Rev.127 965.
[19]
Higgs.P.W 1964 Phys.Lett.12 132.
[20]
Englert.F, Brout.R 1964 Phys.Lett.13 321.
[21]
Guralnik.G.S, Hagen.C.R, Kibble.T.W 1964 Phys.Lett.13 585.
[22]
Higgs.P.W 1966 Phys.Rev.145 1156.
[23]
Weinberg.S 1973 Phys.Rev.D7 1068.
[24]
Yukawa.H 1935 Proc.Physic-Math.Soc.Japan 17, 48.
[25]
Tomonaga.S 1946 Prog. of. Theo.Phys .1.2.
[26]
Weinberg.S 1971 Gravitational and Cosmology John Wiley and Sons.
[27]
Callaway.D,Rahman.A 1982 Microcanonical Ensemble Formulation of Lattice Gauge Theory Physical Review Letters 49: 613–616.
[28]
Callaway.D, Rahman .A 1983 Lattice gauge theory in the microcanonical ensemble Physical Review D28: 1506–1514.
[29]
Dürr.S, Fodor.Z, Frison.J et al. 2008 Ab Initio Determination of Light Hadron Masses Science 322 5905: 1224.
[30]
Bazavov.A et al. 2010 Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks Reviews of Modern Physics 82: 1349–1417.
[31]
Kostelecky, V.A, Russell, N. 2010 Data Tables for Lorentz and CPT Violation. Preprint hep-ph/08010287.
[32]
Sozzi, M.S 2008 Discrete symmetries and CP violation. Oxford University Press.
[33]
Griffiths, David J 1987 Introduction to Elementary Particles. Wiley, John & Sons.
[34]
Streater.R.F, Wightman.A.S 1964 PCT, spin and statistics, and all that.Benjamin/Cumming.
[35]
[D0 Collaboration], Abbott.B, et al. 1990 Phys. Rev. D 60 031 101.
[36]
[D0 Collaboration], Abbott.B, et al 2001 Phys. Rev. D 63 091 102.
[37]
Bilaniuk.O.-M. et.al 1962 "'Meta' Relativity" American Journal of Physics 30, 10 71.
[38]
Feinberg.G 1967 "Possibility of Faster-Than-Light Particles" Physical Review 159 5, 1089.
[39]
Giani.S 1998 On velocities beyond the speed of light c Preprint hep-ph/9712265.
[40]
Adam.T et.al [OPERA Collaboraton] 2011 Measurement of the neutrino velocity with the OPERA detector in the CNGS beam Preprint hep-ex /1109.4897.
[41]
Koorambas, E, Commun. Theor. Phys. 57 (2), 241-244, (2012), doi: 10.1088/0253-6102/57/2/14.
[42]
Koorambas, E, Int J Theor Phys. 51 (10), 3127–3140, (2012), doi: 10.1007/s10773-012-1194-7.
[43]
Koorambas.E, Int J Theor Phys 52 (7), 2235-2244, (2013), doi 10.1007/s10773-013-1499-1.
[44]
Koorambas.E, Recent Developments in Bosons Research, chapter 2, ed.Ignace Tremblay, pp. 57-82, (Nova Science Publishers, Inc., New York, 2013- May).
[45]
Koorambas, E, Int J Theor Phys, 52, (12), 4374–4388 (2013), doi: 10.1007/s10773-013-1756-3
[46]
Koorambas,E, Quantum. Matter, 3, (3), 215-218 (2014), doi:10.1166/qm.2014.1115.
[47]
Kuzmenko, T.Yu.: In: Proceedings of Institute of Mathematics of NAS of Ukraine 2000, vol. 30, Part 2 pp. 501–506 (2000)
[48]
Haywood.S, Symmetries and Conservation Laws in Particle physics 2011, Imperial College Press London UK
[49]
Weinberg.S, The Quantum Theory Of Fields Vol.2 1996 Cambridge University Press NY USA
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186