Some Degree-Based Topological Indices of Base-3 Sierpiński Graphs
Science Journal of Chemistry
Volume 5, Issue 3, June 2017, Pages: 36-41
Received: Jun. 3, 2017; Accepted: Jul. 4, 2017; Published: Jul. 31, 2017
Views 1967      Downloads 64
Authors
Xiujun Zhang, School of Information Science and Engineering, Chengdu University, Chengdu, China; Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province, Chengdu University, Chengdu, China
Hong Yang, School of Information Science and Engineering, Chengdu University, Chengdu, China; Research Institute of Big Data, Chengdu University, Chengdu, China
Yingying Gao, Colleage of Pharmacy and Biological Engineering, Chengdu University, Chengdu, China
Mohammad Reza Farahani, Department of Applied Mathematics of Iran University of Science and Technology, (IUST) Narmak, Tehran, Iran
Article Tools
Follow on us
Abstract
In this paper, a recursive relation between base-3 Sierpiński graphs rank n and n-1 of some topostructural indices is studied. Based on this relation, The formulae of the First Zagreb index, Second Zagreb index, Randić connectivity index, sum-connectivity index, Geometric-Arithmetic index and Atom-Bond Connectivity index of base-3 Sierpiński graphs are derived.
Keywords
Topological Index, Base-3 Sierpiński Graphs, Zagreb Index, Sum-Connectivity Index, Geometric-Arithmetic Index, Atom-Bond Connectivity Index, Sankruti Index
To cite this article
Xiujun Zhang, Hong Yang, Yingying Gao, Mohammad Reza Farahani, Some Degree-Based Topological Indices of Base-3 Sierpiński Graphs, Science Journal of Chemistry. Vol. 5, No. 3, 2017, pp. 36-41. doi: 10.11648/j.sjc.20170503.12
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Kinkar, C., Gutman, I. Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 2004; 52; 103–112.
[2]
Darafsheh, M. R. Computation of Topological Indices of Some Graphs. Acta Appl. Math. 2010; 110; 1225–1235.
[3]
Vukicevic, D., Furtula, B. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges, J. Math. Chem. 2009; 46; 1369–1376.
[4]
Estrada, E., Torres, L., Rodriguez, L., Gutman, I. An atom–bond connectivity index: modelling the enthalpy 128of formation of alkanes. Indian J. Chem. Sect. 1998; 37; 849–855.
[5]
Hinz, A. M., Klavzar, S., Zemljic, S. S. A survey and classification of Sierpinski-type graphs. Discrete Appl. 2017; 217; 565-600.
[6]
Gutman, I., Das, K. C. The first Zagreb indices 30 years after, MATCH Commun. Math. Comput. Chem. 2004; 50; 83–92.
[7]
Gutman, I., Trinajstic, N. Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett. 1972; 17; 535–538.
[8]
Rodriguez, J. M., Sigarreta, J. M. On the Geometric-Arithmetic Index. MATCH Commun. Math. Comput. Chem. 2015; 74; 103–120.
[9]
Klavzar, Sandi, Milutinovic, U. Graphs S (n, k), and a Variant of the Tower of Hanoi Problem. Czech. Math. J. 1997; 47; 95–104.
[10]
Randic, M. The connectivity index 25 years later. J. Mol. Graph. Model. 2001; 20; 19–35.
[11]
Tomasz, P., Leszczynski, J., Mark, T. C. Molecular Descriptors, In Recent advances in QSAR studies: methods and applications; Jerzy L. Eds.; Springer Science & Business Media: Heidelberg, Germany, 2010; pp. 39.
[12]
Randic, Milan. Characterization of molecular branching. J. Am. Chem. Soc. 1975; 97; 6609-6615.
[13]
Nikolc, S., Kovacevic, G., Milicevic, A., Trinajstic, N. The Zagreb indices 30 years after, Croat. Chem. Acta. 2003; 76; 113–124.
[14]
Wiener, H. Correlation of Heats of Isomerization, and Differences in Heats of Vaporization of Isomers, Among the Paraffin Hydrocarbons. J. Am. Chem. Soc. 1947; 84; 2636–2638.
[15]
Zhou, B., Trinajstic, N. On a novel connectivity index. J. Math. Chem. 2009, 46, 1252–1270.
[16]
Lucic, B., Trinajstic, N., Zhou, B. Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons. Chem. Phy. Let. 2009; 475; 146–148.
[17]
Fath-Tabar, G., Furtula, B., Gutman, I. A new geometric–arithmetic index. J. Math. Chem. 2010; 47; 477–486.
[18]
Estradamoreno, A., Rodríguezbazan, E. D., Rodríguezvelazquez, J. A. (2015). On the general randic index of polymeric networks modelled by generalized sierpiński graphs. MATCH Commun. Math. Comput. Chem. 2015; 74; 145–160.
[19]
Fajtlowicz, S. On conjectures of Graffiti-II. Congr. Numer. 1987; 60; 187–197.
[20]
Hosamani, S. M. Computing Sanskruti index of certain nanostructures. J. Appl. Math. Comput. 2016; 1-9.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186