| Peer-Reviewed

Full-Field Displacement Measurement Technique by Using Repeated Patterns and JPEG Compressed Images

Published in Optics (Volume 4, Issue 3-1)
Received: 27 March 2015    Accepted: 26 June 2015    Published: 6 July 2015
Views:       Downloads:
Abstract

This paper presents an experimental technique for measuring displacement distribution from an image of repeated patterns and JPEG compressed images. The measurement accuracy of the developed method is insusceptible to the degree of JPEG compression because only lower spatial frequency components of the repeated pattern are used to calculate the displacement distribution, and high spatial frequency components have high priority to cut-off according to the JPEG compression algorithm. The insensitivity to the JPEG compression was confirmed by a displacement measurement using JPEG images of various compression ratios or image qualities. We found that by using the highest quality JPEG image, the accuracy of displacement measurement could research 1/1000 of the repeated pattern pitch, as same the uncompressed BMP images. In addition, displacement with accuracy of 1/500 pitch could be measured from a compressed JPEG image of which the file size was 1/50 of that of the BMP image. This technique is useful for measurement using a high-speed camera with high-resolution digital images for a long-term or wireless image transfer.

Published in Optics (Volume 4, Issue 3-1)

This article belongs to the Special Issue Optical Techniques for Deformation, Structure and Shape Evaluation

DOI 10.11648/j.optics.s.2015040301.13
Page(s) 9-13
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Deformation Measurement, Sampling Moiré Method, Repeated Pattern, Compressed image, Phase Analysis

References
[1] H. Nassif, M. Gindy, and J. Davis, “Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration,” NDT & E International, 2005, pp. 213–218.
[2] A. M. Wahbeh, J. Caffrey, and S. Masri, “A vision-based approach for the direct measurement of displacements in vibrating systems,” Smart Mater. Struct. Vol. 12, 2003, pp. 785–794.
[3] J. Lee, and M. Shinozuka, “A vision-based system for remote sensing of bridge displacement,” NDT&E International, Vol. 39, 2006, pp. 425–432.
[4] B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review,” Vol. 20, 2009, pp. 062001.
[5] M. A. Sutton, J. L. Turner, H. A. Bruck, and T. A. Chao, “Full-field representation of discretely sampled surface deformation for displacement and train analysis”, Experimental Mechanics, Vol. 31, 1991, pp. 168–177.
[6] S. Yoneyama, and Y. Morimoto, “Accurate displacement measurement by correlation of colored random patterns,” JSME International Journal (Series A), Vol. 46, 2003, pp. 178–184.
[7] P. Ifju, B. Han, “Recent applications of moiré interferometry,” Experimental Mechanics, Vol. 50, 2010, pp. 1129–1147.
[8] S. Kishimoto, Y. Tanaka, K. Naito, and Y. Kagawa, “Measurement of strain distribution of composite materials by electron moiré method,” Nanocomposites with Unique Properties and Applications in Medicine and Industry, Dr. John Cuppoletti (Ed.), Chapter 11, InTech.
[9] Q. Wang, and S. Kishimoto, “Simultaneous analysis of residual stress and stress intensity factor in a resist after UV-nanoimprint lithography based on electron moiré fringes,” J. Micromech. Microeng. Vol. 22, 2012, 105012 (7pp).
[10] S. Ri, S. Hayashi, S. Ogihara, and H. Tsuda “Accurate full-field optical displacement measurement technique using a digital camera and repeated patterns,” Optics Express, Vol. 22, 2014, pp. 9693–9706.
[11] S. Ri, M. Fujigaki, and Y. Morimoto, “Sampling moiré method for accurate small deformation distribution measurement,” Experimental Mechanics, Vol. 50, 2010, pp. 501–508.
[12] S. Ri, T. Muramatsu, M. Saka, K. Nanbara, and D. Kobayashi, “Accuracy of the sampling moiré method and its application to deflection measurement s of large-scale structures,” Experimental Mechanics, Vol. 52, 2012, pp. 331–340.
[13] S. Ri, M. Saka, K. Nanbara, and D. Kobayashi, “Dynamic thermal deformation measurement of large-scale, high-temperature piping in thermal power plants utilizing the sampling moiré method and grating magnets,” Experimental Mechanics, Vol. 53, 2013, pp. 1635–1646.
[14] W. B. Pennebaker, and J. L. Mitchellm, “JPEG Still Image Data Compression Standard,” New York, 1993.
Cite This Article
  • APA Style

    Shien Ri, Satoshi Hayashi, Hiroshi Tsuda, Shinji Ogihara. (2015). Full-Field Displacement Measurement Technique by Using Repeated Patterns and JPEG Compressed Images. Optics, 4(3-1), 9-13. https://doi.org/10.11648/j.optics.s.2015040301.13

    Copy | Download

    ACS Style

    Shien Ri; Satoshi Hayashi; Hiroshi Tsuda; Shinji Ogihara. Full-Field Displacement Measurement Technique by Using Repeated Patterns and JPEG Compressed Images. Optics. 2015, 4(3-1), 9-13. doi: 10.11648/j.optics.s.2015040301.13

    Copy | Download

    AMA Style

    Shien Ri, Satoshi Hayashi, Hiroshi Tsuda, Shinji Ogihara. Full-Field Displacement Measurement Technique by Using Repeated Patterns and JPEG Compressed Images. Optics. 2015;4(3-1):9-13. doi: 10.11648/j.optics.s.2015040301.13

    Copy | Download

  • @article{10.11648/j.optics.s.2015040301.13,
      author = {Shien Ri and Satoshi Hayashi and Hiroshi Tsuda and Shinji Ogihara},
      title = {Full-Field Displacement Measurement Technique by Using Repeated Patterns and JPEG Compressed Images},
      journal = {Optics},
      volume = {4},
      number = {3-1},
      pages = {9-13},
      doi = {10.11648/j.optics.s.2015040301.13},
      url = {https://doi.org/10.11648/j.optics.s.2015040301.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.optics.s.2015040301.13},
      abstract = {This paper presents an experimental technique for measuring displacement distribution from an image of repeated patterns and JPEG compressed images. The measurement accuracy of the developed method is insusceptible to the degree of JPEG compression because only lower spatial frequency components of the repeated pattern are used to calculate the displacement distribution, and high spatial frequency components have high priority to cut-off according to the JPEG compression algorithm. The insensitivity to the JPEG compression was confirmed by a displacement measurement using JPEG images of various compression ratios or image qualities. We found that by using the highest quality JPEG image, the accuracy of displacement measurement could research 1/1000 of the repeated pattern pitch, as same the uncompressed BMP images. In addition, displacement with accuracy of 1/500 pitch could be measured from a compressed JPEG image of which the file size was 1/50 of that of the BMP image. This technique is useful for measurement using a high-speed camera with high-resolution digital images for a long-term or wireless image transfer.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Full-Field Displacement Measurement Technique by Using Repeated Patterns and JPEG Compressed Images
    AU  - Shien Ri
    AU  - Satoshi Hayashi
    AU  - Hiroshi Tsuda
    AU  - Shinji Ogihara
    Y1  - 2015/07/06
    PY  - 2015
    N1  - https://doi.org/10.11648/j.optics.s.2015040301.13
    DO  - 10.11648/j.optics.s.2015040301.13
    T2  - Optics
    JF  - Optics
    JO  - Optics
    SP  - 9
    EP  - 13
    PB  - Science Publishing Group
    SN  - 2328-7810
    UR  - https://doi.org/10.11648/j.optics.s.2015040301.13
    AB  - This paper presents an experimental technique for measuring displacement distribution from an image of repeated patterns and JPEG compressed images. The measurement accuracy of the developed method is insusceptible to the degree of JPEG compression because only lower spatial frequency components of the repeated pattern are used to calculate the displacement distribution, and high spatial frequency components have high priority to cut-off according to the JPEG compression algorithm. The insensitivity to the JPEG compression was confirmed by a displacement measurement using JPEG images of various compression ratios or image qualities. We found that by using the highest quality JPEG image, the accuracy of displacement measurement could research 1/1000 of the repeated pattern pitch, as same the uncompressed BMP images. In addition, displacement with accuracy of 1/500 pitch could be measured from a compressed JPEG image of which the file size was 1/50 of that of the BMP image. This technique is useful for measurement using a high-speed camera with high-resolution digital images for a long-term or wireless image transfer.
    VL  - 4
    IS  - 3-1
    ER  - 

    Copy | Download

Author Information
  • Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

  • Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan; Department of Mechanical Engineering, Tokyo University of Science, Chiba, Japan

  • Research Institute of Instrumentation Frontier, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

  • Department of Mechanical Engineering, Tokyo University of Science, Chiba, Japan

  • Sections