A Theoretical Investigation by DFT Method on CR – 39 Monomer that is a Plastic Polymer Commonly Used in the Manufacture of Eyeglass Lenses
American Journal of Optics and Photonics
Volume 2, Issue 1, February 2014, Pages: 7-11
Received: Feb. 16, 2014; Published: Mar. 20, 2014
Views 3615      Downloads 213
Authors
Fatih Şen, Department of Opticianry, Vocational High School of Health Services, Kilis 7 Aralık University, Kilis, Turkey
Burhanettin Göker Durdu, Department of Opticianry, Vocational High School of Health Services, Kilis 7 Aralık University, Kilis, Turkey
Murat Oduncuoğlu, Department of Opticianry, Vocational High School of Health Services, Kilis 7 Aralık University, Kilis, Turkey
Kürşat Efil, Department of Chemistry, Arts and Sciences Faculty, Ondokuz Mayis University, Samsun, Turkey
Muharrem Dinçer, Department of Physics, Arts and Sciences Faculty, Ondokuz Mayis University, Samsun, Turkey
Article Tools
PDF
Follow on us
Abstract
In this paper, the diallyl (oxybis(ethane-2,1-diyl)) dicarbonate (CR-39 monomer) of molecular structure that is a plastic polymer commonly used in the manufacture of eyeglass lenses, has been examined theoretically. The molecular structure of CR-39 monomer was optimized by Density Functional Theory (DFT) using B3LYP method with STO-3G basis set without specifying any symmetry for the title molecule. The non-linear optical properties were calculated at the same level and the title compound showed a good second order non-linear optical property. Besides, the frontier molecular orbital (HOMO and LUMO) energies and related molecular properties of CR – 39 monomer were investigated by theoretical calculation results.
Keywords
CR-39 Monomer, Eyeglass Lenses, Density Functional Theory (DFT), Non-Linear Optical Effects
To cite this article
Fatih Şen, Burhanettin Göker Durdu, Murat Oduncuoğlu, Kürşat Efil, Muharrem Dinçer, A Theoretical Investigation by DFT Method on CR – 39 Monomer that is a Plastic Polymer Commonly Used in the Manufacture of Eyeglass Lenses, American Journal of Optics and Photonics. Vol. 2, No. 1, 2014, pp. 7-11. doi: 10.11648/j.ajop.20140201.12
References
[1]
J.L. Bruneni, More Than Meets The Eye, The Stories Behind the Development of Plastic Lenses, PPG Industries Inc., Pittsburgh, Pennsylvania 15272-0001 USA, 1997.
[2]
http://www.ppg.com/optical/opticalproducts/opticalmaterials/Pages/CR-39.aspx, CR-39® monomer, PPG Optical Products2013.
[3]
F.F. Jian, P.S. Zhao, Q. Yu, Q.X. Wang, K. Jiao, The Journal of Physical Chemistry A, 108 (2004), pp. 5258-5267.
[4]
Y. Zhang, Z. Guo, X.-Z. You, Journal of the American Chemical Society, 123 (2001), pp. 9378-9387.
[5]
R. Dennington II, T. Keith, J. Millam, Gauss View Version 4.1.2, Semichem Inc., Shawnee Mission KS, 2007.
[6]
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, A. Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E.01, 2003.
[7]
Y.X. Sun, Q.L. Hao, W.X. Wei, Z.X. Yu, L.D. Lu, X. Wang, Y.S. Wang, Journal of Molecular Structure: THEOCHEM, 904 (2009), pp. 74-82.
[8]
C. Andraud, T. Brotin, C. Garcia, F. Pelle, P. Goldner, B. Bigot, A. Collet, Journal of the American Chemical Society, 116 (1994), pp. 2094-2102.
[9]
M. Nakano, H. Fujita, M. Takahata, K. Yamaguchi, Journal of the American Chemical Society, 124 (2002), pp. 9648-9655.
[10]
V.M. Geskin, C. Lambert, J.-L. Brédas, Journal of the American Chemical Society, 125 (2003), pp. 15651-15658.
[11]
D. Sajan, H. Joe, V.S. Jayakumar, J. Zaleski, Journal of Molecular Structure, 785 (2006), pp. 43-53.
[12]
R. Zhang, B. Du, G. Sun, Y. Sun, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75 (2010), pp. 1115-1124.
[13]
D.A. Kleinman, Physical Review, 126 (1962), pp. 1977-1979.
[14]
K.S. Thanthiriwatte, K.M. Nalin de Silva, Journal of Molecular Structure: THEOCHEM, 617 (2002), pp. 169-175.
[15]
Y.-X. Sun, Q.-L. Hao, Z.-X. Yu, W.-X. Wei, L.-D. Lu, X. Wang, Molecular Physics, 107 (2009), pp. 223-235.
[16]
A.B. Ahmed, H. Feki, Y. Abid, H. Boughzala, C. Minot, A. Mlayah, Journal of Molecular Structure, 920 (2009), pp. 1-7.
[17]
J.P. Abraham, D. Sajan, V. Shettigar, S.M. Dharmaprakash, I. Němec, I. Hubert Joe, V.S. Jayakumar, Journal of Molecular Structure, 917 (2009), pp. 27-36.
[18]
S.G. Sagdinc, A. Esme, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75 (2010), pp. 1370-1376.
[19]
A.B. Ahmed, H. Feki, Y. Abid, H. Boughzala, C. Minot, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75 (2010), pp. 293-298.
[20]
G. Maroulis, D. Begue, C. Pouchan, The Journal of Chemical Physics, 119 (2003), pp. 794-797.
[21]
G. Maroulis, The Journal of Chemical Physics, 129 (2008), pp. 044314-044317.
[22]
H. Tanak, The Journal of Physical Chemistry A, 115 (2011), pp. 13865-13876.
[23]
C. Qin, Y. Si, G. Yang, Z. Su, Computational and Theoretical Chemistry, 966 (2011), pp. 14-19.
[24]
I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London, 1976.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186