Quanto-Optical Effects of Exciton-Polariton System
American Journal of Optics and Photonics
Volume 3, Issue 5, October 2015, Pages: 89-93
Received: Jul. 25, 2015; Accepted: Aug. 7, 2015; Published: Aug. 19, 2015
Views 3984      Downloads 81
Author
Arezu Jahanshir, Department of Eng. Physic, Buein Zahra Technical University, Qazvin, Iran
Article Tools
Follow on us
Abstract
The mutual quantum and optical effects of exciton bound states in exciton-polartiton system in the inhomogeneous multi-layer environment in semiconductor quantum dots (SQDs) are presented. We theoretically show that how optical effects (polarization) of exciton-polariton system can affect on quantum characteristics (spin projections) which results in beats between right- and left-circularly polarized photoluminescence. Optical polarization effects in exciton-polariton interactions in SQDs enable complete studies of the exciton-polariton spin dynamics. The theoretical information on the exotic-polariton states and definition of Hamiltonian interactions according to the basis investigation of the asymptotically bihaviour of the loop function of scalar particles (electron-hole) in SQDs are determined. Using oscillator representation method, spin Hamiltonian coefficient of excitons with effective confinement potential, Coulomb and spin effects are determined. In addition we can say that controlling and understanding of spin interaction between electron- holes localized in SQDs can controlled optically effects and interactions. Spin quantum manipulations can be useful in new generation of optic-photonic studies, especially super quantum computers, Bose condensates of exciton-polariton, polariton lasers and etc
Keywords
Exciton-Polartiton, Spin Interaction, Optical Polarization, Multiple Spin Projections
To cite this article
Arezu Jahanshir, Quanto-Optical Effects of Exciton-Polariton System, American Journal of Optics and Photonics. Vol. 3, No. 5, 2015, pp. 89-93. doi: 10.11648/j.ajop.20150305.16
References
[1]
Yu. D. Zavorotnev and O. Yu. Popova, “Polariton Spectrum Subject to Bose-Einstein Condensate of Excitons’, Journal of Photonic Materials and Technology; 1(1), 10-14, 2015.
[2]
V. V. Rumyantsev and K. V. Gumennyk, “Towards a History of Concepts of Light-Matter Coupling “, Journal of Photonic Materials and Technology, 1(1), 1-9, 2015.
[3]
M. Dineykhan, G.V. Efimov and Kh. Narmsrai, “Investigation of Green Functions and the Parisi-Wu Quantization Method in Background Stochas¬tic Fields”, Fortsh. Phys., 39, 259-318, 1999.
[4]
R.P. Feynman, A. P. Hibbs, “Quantum Mechanics and Path Integrals”, New York McGraw-Hill, 1965.
[5]
M. Dineykhan, A. Jahanshhir, et al., “Mass spectrum bound state system with relativistic corrections”, Journal of physics B: Atomic, Molecular and Optical Physics, 42(1), 145001, 2009.
[6]
M. Dineykhan, A. Jahanshir, et al., “Effective Hamiltonian in scaler electrodynamics”, Preprint, 197(p2-2002-197). Dubna, Russian, 1-20, 2002.
[7]
M. Dineykhan, G.V. Efimov, “The Schrodinger equation for the Bound State Systems in the Oscillator Representation”, Reports on Mathematical Physics, 36, 287-307, 1995.
[8]
M. Dineykhan, R.G. Nazmitdinov, “On analytical solutions to the problem of the Coulomb and confining potentials”, Yad. Fiz., 62, 143-148, 1999.
[9]
A. Jahanshir, “Exotic pi-atom”, First ICP, Iran, 679-682, 2004.
[10]
M. Dineykhan, G.V. Efimov, G. Ganbol, “Oscillator rep¬resentation in quantum physics”, Springer- Verlag, Berlin, 1995.
[11]
A. Jahanshir, “Mesonic hydrogen mass spectrum in the oscillator representation”, Journal of Theoretical and Applied Physics, 3(4), 14-17, 2010.
[12]
W. Lucha, F. Schoberl, D. Gromes,” Bound states of quarks”, Phys. Rep. 200, 127-135, 1991.
[13]
W.Greiner and Y.Reinhort, Q”uantum Electrodynamic”, 1st edition, Springer- Verleg, 1992.
[14]
A. Jahanshir, “Spin-Orbital Effect of Diexciton in Quantum Dots”, American Journal of Condensed Matter Physics, 2(3), 57-62, 2012.
[15]
A. Jahanshir, “Hamiltonian Multiplex Interaction Based on Excitons Effect in Semiconductor QCs”, Scientific Journal of Pure and Applied Sciences, 3(11), 878-880, 2014.
[16]
P.Y. Yu, M. Cardona, “Fundamental of Semiconductors”, 3rd edn., Springer, Berlin, 2001.
[17]
J.M. Luttinger, “Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory” Phys. Rev. 102, 1030, 1956.
[18]
M.I. Dyakonov, V.I. Perel, Z. Eksp., “Theory of optical spin orientation of electrons”, Teor. Fiz. 60, 1954, 1971; Sov. Phys. JETP 33, 1053, 1971.
[19]
T. Byrnes, N. Young Kim, Y. Yamamoto, “Exciton–polariton condensates”, Nature Physics, 10, 803–813, 2014.
[20]
L. Pitaevskii, S. Stringari, “Bose–Einstein Condensation”, Oxford Science Publications, 2003.
[21]
J. Kasprzak, et al., “Bose–Einstein condensation of exciton polaritons”, Nature 443, 409–414 2006.
[22]
R. Balili, et al., “Bose–Einstein condensation of microcavity polaritons in a trap” Science 316, 1007–1010, 2007.
[23]
H.Deng, et al., “Condensation of semiconductor microcavity exciton polaritons”, Science 298, 199–202, 2002.
[24]
J., Klaers, et al., “Bose–Einstein condensation of photons in an optical microcavity”, Nature 468, 545–548, 2010.
[25]
H. Deng, H. Haug, Y. & Yamamoto, “Exciton–polariton Bose–Einstein condensation”, Rev. Mod. Phys. 82, 1489–1537, 2010.
[26]
M. Richard et al. “Exciton–polariton Bose–Einstein condensation: Advances and issues”, Int. J. Nanotech. 7, 668–683, 2010.
[27]
D. Snoke, P. Littlewood, “Polariton condensates”, Phys. Today, 63, 42–47, 2010.
[28]
J. Keeling, N. G. Berloff, “Exciton–polariton condensation”, Contemp. Phys. 52, 131–151, 2011.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186