| Peer-Reviewed

Investigation of the Reflectivity Spectrum of the a-Plane Oriented ZnO Epilayers Grown by Plasma-Assisted Molecular Beam Epitaxy from the Gaussian Distribution

Received: 25 October 2017    Accepted: 3 November 2017    Published: 18 December 2017
Views:       Downloads:
Abstract

The Photoluminescence spectra at low temperature of the a-plane oriented ZnO grown on r-plane (011-2) sapphire substrates by plasma-assisted molecular beam epitaxy, showed experimentally three types of excitons A, B and C. In the reflectivity spectra, authors used a program based on the theory of the spatial resonance dispersion Hopfield model to fit the free excitons. The A and B free excitons were fitted together and the C exciton with the band gap. But these fits were not perfect in the transparency zone at low energy. This is mainly due to the fact that the A and B free excitons are closer and the C exciton is closer to the band gap but another reason is the value of the oscillator strength. In the present work, we present a method taking account the Gaussian distribution, to fit perfectly the excitons A, B and C using almost the same physical parameters than the theory of the spatial resonance dispersion Hopfield model.

Published in American Journal of Optics and Photonics (Volume 5, Issue 5)
DOI 10.11648/j.ajop.20170505.11
Page(s) 50-54
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Exciton A, B and C, Gaussian Distribution, Reflectivity Spectrum, a-Plane Oriented ZnO

References
[1] C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, J. X. Wang, applied physics letters 90, 263501 (2007).
[2] Yun-Ju Lee, Douglas S. Ruby, David W. Peters, Bonnie B. Mckenzie, Julia W. P. Hsu, Nano Letters 2008, Vol.8, N°5, 1501-1505.
[3] C. Eisele, C. E. Nebel, M. Stutzmann, j. appl. Phys. 89, 7722 (2001).
[4] J. Springer, B. Reeh, W. Reetz, J. Müller, M. Vanecek, solar energy materials & solar cells 85 (2005) 1- 11.
[5] Takashi Fujibayashi, Tkuya Matsui, Michio Kondo, applied physics letters 88,18350 (2006).
[6] Kannan Ramanathan, Miguel A. Contreras, Craig L. Perkins, Sally Asher, Falash S. Hasoon, James Keane, David Young, Manuel Romero, Wyatt Metzger, Rommel Noufi, James Ward, Anna Duda, Prog. Photovolt: res. Appl 2003; 11: 225-230.
[7] B. Lo, M. B. Gaye, A. Dioum, C. M. Mohrain, M. S. Tall, J. M. Chauveau, M. Doninelli Tesseire, S. Ndiaye, A. C. Beye, Appl. Phys. A (2014) 115: 257-261.
[8] M. Wraback, H. Shen, S. Liang, C. R. Gorla, and Y. Lu, Applied Physics Letters 74, 507 (1999).
[9] E. V. Lavrov, F. Börrnert, J. Weber, Physica B 376-377 (2006) 694-698.
[10] J. R. Schneck, E. Belloti, P. Lammarre, L. D. Ziegler, Applied Physics letters 93, 102-111 (2008).
[11] Hisashi Yoshikawa, Sadao Adachi, Jpn. Appl. Phys. Vol.36 (1997) pp. 6237-6243.
[12] S. Bloom, I. Ortenburger, phys. Stat. sol. 58, 561 (1973).
[13] Y. C. Liu, S. K. Tung, J. H. Hsieh, Journal of crystal growth 287 (2006) 105-111.
[14] S. F. Yu, Clement, Yuen, S. P. Lau, W. I. Park, Gyu-Chui Yi, Applied Physics Letters 84,3241 (2004).
[15] J. M. Jensen, A. B. Oelkers, R. Toivola, D. C. Johnson, Chem. Mater.2002, 14, 2276-2282.
[16] Zuowan Zhou, Longsheng Chu, Shuchun Hu, Materials Science and Engineering B 126 (2006) 93-96.
[17] K. Hümmer, phys. Stat. sol. 56 (b), 249 (1973).
[18] Claude Lévy-Clément, ramon tena-Zaera, margaret A. Ryan, Abou Katty, Gary Hodes, adv. Mater 2005, 17, 1512-1515.
[19] F. Hamdani, A. Botchkarev, W. Kim, H. Morkoço, M. Yeadon, J. M. Gibson, S. C. Y. Tsen, David J. Smith, D. C. Reynolds, D. C. Look, K. Evans, C. W. Litton, W. C. Michel, P. Hemenger, Applied physics letters 70, 467 (1997).
[20] Z. C. Jin, I. Hamberg, C. G. Granqvist, J. Appl. Phys 64, 5117 (1988).
[21] J. Lagois, K. Hümmer, phys. Stat. sol. (b) 72, 393 (1975).
[22] M. Kunat, St. Gil Girol, Th. Becker, U. Burghaus, Ch. Wöll, Physical Review B 66, 081402® 2002.
[23] Xiaodong Yang, Jingwen Zhang, Zhen Bi, Yongning He, Qing’an Xu, Hongbo Wang, Weifeng Zhang, Xun Hou, Journal of Crystal Growth 284 (2005) 123-128.
[24] R. J. Collins, D. A. Kleinman, J. Phys. Chem. Solids Pergamon Press 1959, vol. 11, pp. 190-194.
[25] R. L. Hengehold, R. J. Almassy, Physical Review B Vol. 1, N° 12 (1970).
[26] Sheng Chu, Mario Olmedo, Zheng Yang, Jieying Kong, Jianlin Liu, Applied Physics Letters 93, 181106 (2008).
[27] M. Lorentz, M. Hochmuch, R. Schmidt-Grund, E. M. Kaidashevi, M. Grundmann, Ann. Phys. (Leipzig) 13, N° 1, 59-60 (2004).
[28] R. Klucker, H. Nelkowski, Y. S. Park, M. Skibowski, T. S. Wagner, Phys. Stat. sol. 45, 265 (1971).
[29] Run Wu, Changsheng Xie, Materials Research Bulletin (39 (20014) 637-645.
[30] E. F. Venger, A. V. Melnichuk, L. Yu. Melnichuck, A. Pasechnik, phys. Stat. sol. (b) 188, 823 (1995).
[31] J. J. Hopfield, physical review, vol. 112, 5, 1555-1567 (1958).
[32] J. J. Hopfield, D. G. Thomas, physical review, vol. 132,2,563-572 (1963).
[33] D. W. Hamby, D. A. Lucca, M. J. Klopfstein, G. Cantwell, Journal of Applied Physics 93,3214 (2003).
[34] A. Björk, Numerical Methods for last Squares Problems, SIAM, Philadelphia, PA.
[35] A. L. Dulmage, N. S. Mendelsohn, Journal of the Society for Industrial and Applied Mathematics, 11 (1), 183–194 (1963).
[36] Manfred Gilli, Méthodes Numériques, pp. 1-132 (2006).
[37] M. Gilli, M. Garbely, Journal of Economic Dynamics and Control 20, 1541-1556 (1996).
[38] G. H. Golub, C. F. Van Loan, J. Numer. Anal., 17 (6), 883–893 (1980).
[39] C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh, ACM Transactions on Mathematical Software, Vol 5, N° 3, 308-323 (1979).
[40] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Geological Magazine 127, 376-377 (1990).
[41] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, Journal of Crystal Growth 287 (2006) 124–127.
[42] D. Tainoff, B. Masenelli, P. Mélinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, P. Martin, Physical Review B 81, 115304 (2010).
[43] D. G. Thomas, J. Phys. Solids Pergamon Press 1960. Vol.15. pp. 86-96.
[44] D. C. Reynolds, D. C. Look, B. Jogai, Physical Review B 60 (4), 2340 (5).
[45] S. I. Pekar, J. Exptl. Theoret. Phys. (U. S. S. R) 34, 1176-1188 (1958).
[46] S. I. Pekar, J. Exptl. Theoret. Phys. (U. S. S. R) 38, 1786-1797, (1960).
[47] J. Frenkel, Physical Review, Vol 54, pp.17-44 (1930).
[48] Gregory H. Wannier, Physical Review, Vol 37, pp.191-197 (1937).
[49] Alioune Aidara Diouf, Bassirou Lo, Famara Dieme, Abdourahmane Mbodji, Aboubaker Chedikh Beye, Computer Simulation of the Dielectrics Properties in the Dense Circles, Colloid and Surface Science. Vol. 2, No. 3, 2017, pp. 107-113. doi: 10.11648/j.css.20170203.13
[50] Alioune Aidara Diouf, Bassirou Lo, Alhadj Hisseine Issaka Ali, Aboubaker Chedikh Beye. Comparative Investigation and Generalized of the Core/Shell Effects on the Magnetics Properties in the Ferromagnetic Cubic Nanoparticles by the Transverse Ising Model. American Journal of Nanomaterials. Vol. 4, No. 1, 2016, pp 1-7. http://pubs.sciepub.com/ajn/4/1/1.
Cite This Article
  • APA Style

    Alioune Aidara Diouf, Bassirou Lo, Abel Sambou, Oumar Sakho, Aboubaker Chedikh Beye. (2017). Investigation of the Reflectivity Spectrum of the a-Plane Oriented ZnO Epilayers Grown by Plasma-Assisted Molecular Beam Epitaxy from the Gaussian Distribution. American Journal of Optics and Photonics, 5(5), 50-54. https://doi.org/10.11648/j.ajop.20170505.11

    Copy | Download

    ACS Style

    Alioune Aidara Diouf; Bassirou Lo; Abel Sambou; Oumar Sakho; Aboubaker Chedikh Beye. Investigation of the Reflectivity Spectrum of the a-Plane Oriented ZnO Epilayers Grown by Plasma-Assisted Molecular Beam Epitaxy from the Gaussian Distribution. Am. J. Opt. Photonics 2017, 5(5), 50-54. doi: 10.11648/j.ajop.20170505.11

    Copy | Download

    AMA Style

    Alioune Aidara Diouf, Bassirou Lo, Abel Sambou, Oumar Sakho, Aboubaker Chedikh Beye. Investigation of the Reflectivity Spectrum of the a-Plane Oriented ZnO Epilayers Grown by Plasma-Assisted Molecular Beam Epitaxy from the Gaussian Distribution. Am J Opt Photonics. 2017;5(5):50-54. doi: 10.11648/j.ajop.20170505.11

    Copy | Download

  • @article{10.11648/j.ajop.20170505.11,
      author = {Alioune Aidara Diouf and Bassirou Lo and Abel Sambou and Oumar Sakho and Aboubaker Chedikh Beye},
      title = {Investigation of the Reflectivity Spectrum of the a-Plane Oriented ZnO Epilayers Grown by Plasma-Assisted Molecular Beam Epitaxy from the Gaussian Distribution},
      journal = {American Journal of Optics and Photonics},
      volume = {5},
      number = {5},
      pages = {50-54},
      doi = {10.11648/j.ajop.20170505.11},
      url = {https://doi.org/10.11648/j.ajop.20170505.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajop.20170505.11},
      abstract = {The Photoluminescence spectra at low temperature of the a-plane oriented ZnO grown on r-plane (011-2) sapphire substrates by plasma-assisted molecular beam epitaxy, showed experimentally three types of excitons A, B and C. In the reflectivity spectra, authors used a program based on the theory of the spatial resonance dispersion Hopfield model to fit the free excitons. The A and B free excitons were fitted together and the C exciton with the band gap. But these fits were not perfect in the transparency zone at low energy. This is mainly due to the fact that the A and B free excitons are closer and the C exciton is closer to the band gap but another reason is the value of the oscillator strength. In the present work, we present a method taking account the Gaussian distribution, to fit perfectly the excitons A, B and C using almost the same physical parameters than the theory of the spatial resonance dispersion Hopfield model.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Investigation of the Reflectivity Spectrum of the a-Plane Oriented ZnO Epilayers Grown by Plasma-Assisted Molecular Beam Epitaxy from the Gaussian Distribution
    AU  - Alioune Aidara Diouf
    AU  - Bassirou Lo
    AU  - Abel Sambou
    AU  - Oumar Sakho
    AU  - Aboubaker Chedikh Beye
    Y1  - 2017/12/18
    PY  - 2017
    N1  - https://doi.org/10.11648/j.ajop.20170505.11
    DO  - 10.11648/j.ajop.20170505.11
    T2  - American Journal of Optics and Photonics
    JF  - American Journal of Optics and Photonics
    JO  - American Journal of Optics and Photonics
    SP  - 50
    EP  - 54
    PB  - Science Publishing Group
    SN  - 2330-8494
    UR  - https://doi.org/10.11648/j.ajop.20170505.11
    AB  - The Photoluminescence spectra at low temperature of the a-plane oriented ZnO grown on r-plane (011-2) sapphire substrates by plasma-assisted molecular beam epitaxy, showed experimentally three types of excitons A, B and C. In the reflectivity spectra, authors used a program based on the theory of the spatial resonance dispersion Hopfield model to fit the free excitons. The A and B free excitons were fitted together and the C exciton with the band gap. But these fits were not perfect in the transparency zone at low energy. This is mainly due to the fact that the A and B free excitons are closer and the C exciton is closer to the band gap but another reason is the value of the oscillator strength. In the present work, we present a method taking account the Gaussian distribution, to fit perfectly the excitons A, B and C using almost the same physical parameters than the theory of the spatial resonance dispersion Hopfield model.
    VL  - 5
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal; Department of Nanoscience & Nanotechnology Research, Dakar American University of Science & Technology, Somone, Senegal

  • Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal

  • Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal

  • Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal

  • Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal

  • Sections