| Peer-Reviewed

Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods

Received: 10 January 2017    Accepted: 31 January 2017    Published: 12 January 2018
Views:       Downloads:
Abstract

The binding of cefonicid sodium (CFS) with trypsin was investigated by spectroscopic and molecular docking methods under different temperatures conditions (303, 310 and 318 K). The results demonstrated that the interaction between CFS and trypsin was taking place via static quenching with 1:1 binding ratio. The fluorescence datas were treated by using the double logarithmic equation, and the binding constants Ka of the interaction of CFS-trypsin systems and the number of binding sites n were obtained. The thermodynamic parameters of CFS-trypsin systems under different temperatures were obtained by the thermodynamic equation. The experimental data show that the interactions between them were mainly hydrophobic interaction and hydrogen bonding interaction, and with the molecular docking results are consistent.

Published in American Journal of Optics and Photonics (Volume 5, Issue 6)
DOI 10.11648/j.ajop.20170506.14
Page(s) 80-87
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Cefonicid Sodium, Trypsin, Spectrometry, Interaction, Molecular Docking

References
[1] X. N. Yan, B. S. Liu, B. H. Chong, S. N. Cao, J. Lumin. 2013, 142,162.
[2] L. Gombos, J. Kardos, A. Patthy, P. Medveczky, L. Szilagyi, A. Malnasi-Csizmadia, L. Graf, Biochem. 2008, 47, 1684.
[3] S. Ghosh, Colloid. Surface. B 2008, 66, 186.
[4] R. M. Stroud, L. M. Kay, R. E. Dickerson, J. Mol. Biol. 1974, 83, 192.
[5] H. Li, J. Pu, Y. Wang, C. Liu, J. Yu, T. Li, R. Q. Wang, Spectrochim. Acta A 2013, 115, 11.
[6] Y. Q. Wang, C. Y. Tan, S. L. Zhuang, P. Z. Zhai, Y. Cui, Q. H. Zhou, H. M. Zhang, Z. H. Fei, J. Hazard. Mater. 2014, 278, 65.
[7] X. X. Hu, Z. H. Yu, R. T. Liu, Spectrochim. Acta A 2013, 108, 54.
[8] X. R. Li, P. H. Li, Lumin. 2016, 31, 792.
[9] M. Nidhin, D. Ghosh, H. Yadav, N. Yadav, S. Majumder, Materi. Sci. Engin. B 2015, 202, 53.
[10] W. He, H. Dou, L. Zhang, L. Wang, R. Wang, J. Chang, Spectrochim. Acta Part A 2014,118, 519.
[11] G. Elmas, Y. Esra, J. Fluoresc. 2014, 24, 1445.
[12] J. Q. Liu, J. N. Tian, Y. Li, X. J. Yao, Z. D. Hu, X. G. Chen, Macromol. Biosci. 2005, 4, 520.
[13] S. H. D. P. Lacerda, J. J. Park, C. Meuse, D. Pristinski, M. L. Becker, A. Karim, J. F. Douglas, Acs Nano 2009, 4, 379.
[14] C. N. Pace, F. Vajdos, L. Fee, Fee, G. Grimsley, T. Gray, Prot. Sci. 1995, 11, 2423.
[15] Z. X. Chi, R. T. Liu, H. Zhang, Biomacromolecules 2010, 9, 2459.
[16] R. Yang, L. L. Yu, H. J. Zeng, R. L. Liang, X. L. Chen, L. B. Qu, J. Fluoresc. 2012, 22, 1459.
[17] Y. Teng, F. Ji, C. Li, Z. Yu, R. Liu, J. Lumin. 2011, 131, 2667.
[18] G. Kaur, S. Tripathi, Spectrochim. Acta. Part A 2015, 134, 183.
[19] Y. Q. Wang, H. M. Zhang, G. C. Zhang, S. X. Liu, Q. H. Zhou, Z. H. Fei, Int. J. Biol. Macromol. 2007, 41, 250.
[20] Y. Hu, S. Xu, X. Zhu, A. Gong, Spectrochim. Acta A. 2009, 74, 531.
[21] R. Ghosh, M. Mukherjee, K. Chattopadhyay, S. Ghosh, J. Phys. Chem. B 2012, 116, 12500.
[22] M. Maciazek-Jurczyk, A. Sulkowska, B. Bojko, J. Rownicka, W. W. Sulkowska, J. Mol. Struct. 2009, 924-926, 384.
[23] Y. J. Hu, Y. Liu, Z. B. Pi, S. S. Qu, Bioorg. Med. Chem. 2005, 13, 6609.
[24] Y. Y. Hu, S. Q. Xu, X. S. Zhu, A. Q. Gong, Spectrochim. Acta Part A 2009, 74, 531.
[25] K. Gurvir, S. K. Tripathi, Spectrochim. Acta Part A 2015, 134, 183.
[26] Y. Y. Yue, X. G. Chen, J. Qin, X. J. Yao, Dyes Pigm. 2008, 79, 182.
[27] P. D. Ross, S. Subramanian, Biochem. 1981, 20, 3096.
[28] W. R. Wang, R. R. Zhu, R. Xiao, H. Liu, S. L. Wang, Biol. Trace. Elem. Res., 2011, 142, 446.
[29] Y. Lu, G. K. Wang, X. M. Lu, J. Lv, M. H. Xu, W. W. Zhang, Spectrochim. Acta Part A 2010, 75, 266.
[30] B. Bojko, A. Sulkowska, M. Maciazek-Jurczyk, J. Rownicka, W. W. Sukowski, J. Pharm. Biomed. Anal. 2010, 52, 384.
[31] S. N. Khan, B. Islam, R. Yennamalli, A. Sultan, N. Subbarao, A. U. Khan, Eur. J. Pharm. Sci. 2008, 35, 382.
[32] W. He, H. J. Dou, L. J. Wang, R. Y. Wang, J. B. Chang, Spectrochim. Acta A 2014, 118, 519.
[33] J. Jin, X. Zhang, J. Lumin. 2008, 128, 86.
[34] R. Zhang, T. Sun, C. G. Liu, W. Song, Z. Z. Cao, R. T. Liu, Biochem. Mol. Toxicol. 2015, 29, 425.
[35] Y. Jia, H. Q. Yang, L. Q. Guo, Q. Wang, Q. Y. M. Huang, H. Li, Chemi. Resea. Applic. 2016, 28, 680.
Cite This Article
  • APA Style

    Jinju Wang, Baosheng Liu, Shaotong Duan, Tongtong Li. (2018). Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods. American Journal of Optics and Photonics, 5(6), 80-87. https://doi.org/10.11648/j.ajop.20170506.14

    Copy | Download

    ACS Style

    Jinju Wang; Baosheng Liu; Shaotong Duan; Tongtong Li. Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods. Am. J. Opt. Photonics 2018, 5(6), 80-87. doi: 10.11648/j.ajop.20170506.14

    Copy | Download

    AMA Style

    Jinju Wang, Baosheng Liu, Shaotong Duan, Tongtong Li. Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods. Am J Opt Photonics. 2018;5(6):80-87. doi: 10.11648/j.ajop.20170506.14

    Copy | Download

  • @article{10.11648/j.ajop.20170506.14,
      author = {Jinju Wang and Baosheng Liu and Shaotong Duan and Tongtong Li},
      title = {Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods},
      journal = {American Journal of Optics and Photonics},
      volume = {5},
      number = {6},
      pages = {80-87},
      doi = {10.11648/j.ajop.20170506.14},
      url = {https://doi.org/10.11648/j.ajop.20170506.14},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajop.20170506.14},
      abstract = {The binding of cefonicid sodium (CFS) with trypsin was investigated by spectroscopic and molecular docking methods under different temperatures conditions (303, 310 and 318 K). The results demonstrated that the interaction between CFS and trypsin was taking place via static quenching with 1:1 binding ratio. The fluorescence datas were treated by using the double logarithmic equation, and the binding constants Ka of the interaction of CFS-trypsin systems and the number of binding sites n were obtained. The thermodynamic parameters of CFS-trypsin systems under different temperatures were obtained by the thermodynamic equation. The experimental data show that the interactions between them were mainly hydrophobic interaction and hydrogen bonding interaction, and with the molecular docking results are consistent.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Mechanism of Interaction Between Cefonicid Sodium and Trypsin by Spectroscopic and Molecular Docking Methods
    AU  - Jinju Wang
    AU  - Baosheng Liu
    AU  - Shaotong Duan
    AU  - Tongtong Li
    Y1  - 2018/01/12
    PY  - 2018
    N1  - https://doi.org/10.11648/j.ajop.20170506.14
    DO  - 10.11648/j.ajop.20170506.14
    T2  - American Journal of Optics and Photonics
    JF  - American Journal of Optics and Photonics
    JO  - American Journal of Optics and Photonics
    SP  - 80
    EP  - 87
    PB  - Science Publishing Group
    SN  - 2330-8494
    UR  - https://doi.org/10.11648/j.ajop.20170506.14
    AB  - The binding of cefonicid sodium (CFS) with trypsin was investigated by spectroscopic and molecular docking methods under different temperatures conditions (303, 310 and 318 K). The results demonstrated that the interaction between CFS and trypsin was taking place via static quenching with 1:1 binding ratio. The fluorescence datas were treated by using the double logarithmic equation, and the binding constants Ka of the interaction of CFS-trypsin systems and the number of binding sites n were obtained. The thermodynamic parameters of CFS-trypsin systems under different temperatures were obtained by the thermodynamic equation. The experimental data show that the interactions between them were mainly hydrophobic interaction and hydrogen bonding interaction, and with the molecular docking results are consistent.
    VL  - 5
    IS  - 6
    ER  - 

    Copy | Download

Author Information
  • Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, P. R. China

  • Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, P. R. China

  • Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, P. R. China

  • Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry & Environmental Science, Hebei University, Baoding, P. R. China

  • Sections