| Peer-Reviewed

Simulation and Analysis Method of Different Back Metals Contact of CH3NH3PbI3 Perovskite Solar Cell Along with Electron Transport Layer TiO2 Using MBMT-MAPLE/PLD

Received: 30 January 2020    Accepted: 11 February 2020    Published: 24 February 2020
Views:       Downloads:
Abstract

Many different photovoltaic technologies are being developed for better solar energy conversion. Until now, crystalline Si solar cell represents the dominant photovoltaic technology with a market share of more than 94% with an efficiency between (15%-20%). Organic-inorganic halide Perovskite Solar Cell (PSC) has emerged as the most promising candidate for the next generation high-efficiency solar cell technology that attracted interest from researchers around the world due to their high efficiency of more than 24.% in a short period from (2008-2019) and low fabrication cost. In this paper, we designed a lead-based PSC model with a cell structure of Glass/FTO/TiO2/CH3NH3PBI3/Spiro-OMeTAD/(Au, Ag, Al, Cu, Cr, Cu-graphite alloy, and Pt) and analyzed the structure with different contact materials using Solar Cell Capacitance Simulator (SCAPS-1D) which is well adopted by many researchers to study and analyze the hybrid solar cell. Using the software allows researchers to inexpensively and promptly, the effect of the absorber and the contact materials on the performance of the proposed solar cell model. We also studied the bandgap of the active layer, defect density, thickness, operating temperature, and the fabrication method of the model. Furthermore, the adoption of multibeam multi-target MAPLE and PLD or with acronym MBMT-MAPLE/PLD techniques as a new fabrication method in our simulation program mentioned above. A promising result was achieved. Efficiencies of 27.25%, 26.52%, 18.90%, 25.66%, 22.77%, 27.25%, and 27.25% were obtained for the devices with Au, Ag, Al, Cu, Cr, Pt, and Cu-graphite alloy, respectively. The effect of the work function on the back contact has a significant influence over the FF and efficiency.

Published in American Journal of Optics and Photonics (Volume 8, Issue 1)
DOI 10.11648/j.ajop.20200801.12
Page(s) 6-26
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Inorganic Materials Modeling, Organic Materials, Perovskite Solar Cell, Photovoltaics, Simulation, MAPLE, PLD

References
[1] K. P. Bhandari and R. J. Ellingson, “An Overview of Hybrid Organic-Inorganic Metal Halide Perovskite Solar Cells,” A Comprehensive Guide to Solar Energy Systems, pp. 233–254, 2018.
[2] Resources.solarbusinesshub.com, “Global Market Outlook for Solar Power 2016-2020 - Solar Business Hub,” Resources, Jul-2016. [Online]. Available: https://resources.solarbusinesshub.com/solar-industry-reports/item/global-market-outlook-for-solar-power-2016-2020. [Accessed: 28-Jan-2020].
[3] K. P. Bhandari, J. M. Collier, R. J. Ellingson, and D. S. Apul, “Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis,” Renewable and Sustainable Energy Reviews, vol. 47, pp. 133–141, 2015.
[4] Z. Song, C. L. Mcelvany, A. B. Phillips, I. Celik, P. W. Krantz, S. C. Watthage, G. K. Liyanage, D. Apul, and M. J. Heben, “A techno-economic analysis of perovskite solar module manufacturing with low-cost materials and techniques,” Energy & Environmental Science, vol. 10, no. 6, pp. 1297–1305, 2017.
[5] S. K. Wallace, D. B. Mitzi, and A. Walsh, “The Steady Rise of Kesterite Solar Cells,” ACS Energy Letters, vol. 2, no. 4, pp. 776–779, 2017.
[6] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange,” Science, vol. 348, no. 6240, pp. 1234–1237, 2015.
[7] C.-H. Chiang, M. K. Nazeeruddin, M. Grätzel, and C.-G. Wu, “The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells,” Energy & Environmental Science, vol. 10, no. 3, pp. 808–817, 2017.
[8] H. Tan, A. Jain, O. Voznyy, X. Lan, F. P. G. D. Arquer, J. Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L. N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, and E. H. Sargent, “Efficient and stable solution-processed planar perovskite solar cells via contact passivation,” Science, vol. 355, no. 6326, pp. 722–726, 2017.
[9] “Contributed Papers in Specimen Mineralogy: 38th Rochester Mineralogical Symposium: Part 1,” Rocks & Minerals, vol. 87, no. 2, pp. 171–174, 2012.
[10] D. B. Mitzi, “ChemInform Abstract: Synthesis, Crystal Structure, and Optical and Thermal Properties of (C4H9NH3)2MI4 (M. Ge, Sn, Pb).,” ChemInform, vol. 27, no. 26, 2010.
[11] D. B. Mitzi, M. T. Prikas, and K. Chondroudis, “Thin Film Deposition of Organic−Inorganic Hybrid Materials Using a Single Source Thermal Ablation Technique,” Chemistry of Materials, vol. 11, no. 3, pp. 542–544, 1999.
[12] D. B. Mitzi, C. D. Dimitrakopoulos, and L. L. Kosbar, “Structurally Tailored Organic−Inorganic Perovskites: Optical Properties and Solution-Processed Channel Materials for Thin-Film Transistors,” Chemistry of Materials, vol. 13, no. 10, pp. 3728–3740, 2001.
[13] K. Chondroudis and D. B. Mitzi, “Electroluminescence from an Organic−Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers,” Chemistry of Materials, vol. 11, no. 11, pp. 3028–3030, 1999.
[14] J. Ribierre, T. Aoyama, T. Muto, and P. André, “Hybrid organic-inorganic liquid bistable memory devices,” Organic Electronics, vol. 12, no. 11, pp. 1800–1805, 2011.
[15] D. Wang, M. Wright, N. K. Elumalai, and A. Uddin, “Stability of perovskite solar cells,” Solar Energy Materials and Solar Cells, vol. 147, pp. 255–275, 2016.
[16] A. Husainat, W. Ali, P. Cofie, J. Attia, and J. Fuller, “Simulation and Analysis of Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Solar Cell with Au Contact Using SCAPS 1D Simulator,” American Journal of Optics and Photonics, vol. 7, no. 2, p. 33, 2019.
[17] A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells,” Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050–6051, 2009.
[18] J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, and N.-G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell,” Nanoscale, vol. 3, no. 10, p. 4088, 2011.
[19] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel, and N.-G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%,” Scientific Reports, vol. 2, no. 1, 2012.
[20] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, and H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites,” Science, vol. 338, no. 6107, pp. 643–647, 2012.
[21] “Newcomer Juices Up the Race to Harness Sunlight,” Science, vol. 342, no. 6165, pp. 1438–1439, 2013.
[22] S. S. Shin, E. J. Yeom, W. S. Yang, S. Hur, M. G. Kim, J. Im, J. Seo, J. H. Noh, and S. I. Seok, “Colloidally prepared La-doped BaSnO 3 electrodes for efficient, photostable perovskite solar cells,” Science, vol. 356, no. 6334, pp. 167–171, 2017.
[23] A. Ummadisingu, L. Steier, J.-Y. Seo, T. Matsui, A. Abate, W. Tress, and M. Grätzel, “The effect of illumination on the formation of metal halide perovskite films,” Nature, vol. 545, no. 7653, pp. 208–212, 2017.
[24] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells,” Nature, vol. 499, no. 7458, pp. 316–319, 2013.
[25] D. Liu and T. L. Kelly, “Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques,” Nature Photonics, vol. 8, no. 2, pp. 133–138, 2013.
[26] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, and Y. Yang, “Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process,” Journal of the American Chemical Society, vol. 136, no. 2, pp. 622–625, 2013.
[27] M. Liu, M. B. Johnston, and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition,” Nature, vol. 501, no. 7467, pp. 395–398, 2013.
[28] C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang, and H.-W. Lin, “Efficient and Uniform Planar-Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition,” Advanced Materials, vol. 26, no. 38, pp. 6647–6652, 2014.
[29] W.-J. Yin, T. Shi, and Y. Yan, “Unique Properties of Halide Perovskites as Possible Origins of the Superior Solar Cell Performance,” Advanced Materials, vol. 26, no. 27, pp. 4653–4658, 2014.
[30] M. Solomon and A. Johnson, “New Research in Solar Cells: Urbach Tails and Open Circuit Voltage,” Elements, vol. 11, no. 1, 2015.
[31] S. D. Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, and C. Ballif, “Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance,” The Journal of Physical Chemistry Letters, vol. 5, no. 6, pp. 1035–1039, 2014.
[32] G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells,” Energy & Environmental Science, vol. 7, no. 3, p. 982, 2014.
[33] Y. Li, B. Ding, Q.-Q. Chu, G.-J. Yang, M. Wang, C.-X. Li, and C.-J. Li, “Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates,” Scientific Reports, vol. 7, no. 1, 2017.
[34] W. Tress, N. Marinova, O. Inganäs, M. K. Nazeeruddin, S. M. Zakeeruddin, and M. Graetzel, “Predicting the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non-Radiative Recombination,” Advanced Energy Materials, vol. 5, no. 3, p. 1400812, 2014.
[35] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, and L. M. Herz, “High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites,” Advanced Materials, vol. 26, no. 10, pp. 1584–1589, 2013.
[36] T. Leijtens, S. D. Stranks, G. E. Eperon, R. Lindblad, E. M. J. Johansson, I. J. Mcpherson, H. Rensmo, J. M. Ball, M. M. Lee, and H. J. Snaith, “Electronic Properties of Meso-Superstructure and Planar Organometal Halide Perovskite Films: Charge Trapping, Photodoping, and Carrier Mobility,” ACS Nano, vol. 8, no. 7, pp. 7147–7155, 2014.
[37] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, and O. M. Bakr, “Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals,” Science, vol. 347, no. 6221, pp. 519–522, 2015.
[38] D. Kiermasch, P. Rieder, K. Tvingstedt, A. Baumann, and V. Dyakonov, “Improved charge carrier lifetime in planar perovskite solar cells by bromine doping,” Scientific Reports, vol. 6, no. 1, 2016.
[39] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, and H. J. Snaith, “Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber,” Science, vol. 342, no. 6156, pp. 341–344, 2013.
[40] Y. Chen, H. T. Yi, X. Wu, R. Haroldson, Y. N. Gartstein, Y. I. Rodionov, K. S. Tikhonov, A. Zakhidov, X.-Y. Zhu, and V. Podzorov, “Extended carrier lifetimes and diffusion in hybrid perovskites revealed by Hall effect and photoconductivity measurements,” Nature Communications, vol. 7, no. 1, 2016.
[41] F. D. Angelis, “Origin of high open-circuit voltage in lead-halide perovskite solar cells,” Proceedings of the 10th International Conference on Hybrid and Organic Photovoltaics, 2018.
[42] T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White, “Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitized solar cell applications,” Journal of Materials Chemistry A, vol. 1, no. 18, p. 5628, 2013.
[43] “Synthesis, Properties, and Crystal Chemistry of Perovskite-Based Materials,” 2006.
[44] N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee, and S. I. Seok, “o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic–Organic Hybrid Perovskite Solar Cells,” Journal of the American Chemical Society, vol. 136, no. 22, pp. 7837–7840, 2014.
[45] J. You, Y. (M. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li, and Y. Yang, “Moisture assisted perovskite film growth for high-performance solar cells,” Applied Physics Letters, vol. 105, no. 18, p. 183902, 2014.
[46] H. Fu, “Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: From materials to solar cells,” Solar Energy Materials and Solar Cells, vol. 193, pp. 107–132, 2019.
[47] A. Walsh and G. W. Watson, “The origin of the stereochemically active Pb(II) lone pair: DFT calculations on PbO and PbS,” Journal of Solid State Chemistry, vol. 178, no. 5, pp. 1422–1428, 2005.
[48] A. Walsh, D. J. Payne, R. G. Egdell, and G. W. Watson, “Stereochemistry of post-transition metal oxides: revision of the classical lone pair model,” Chemical Society Reviews, vol. 40, no. 9, p. 4455, 2011.
[49] K. T. Butler, J. M. Frost, and A. Walsh, “Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3,” Materials Horizons, vol. 2, no. 2, pp. 228–231, 2015.
[50] F. Mandl, “American Institute of Physics Handbook 3rd end,” Physics Bulletin, vol. 24, no. 8, pp. 492–492, 1973.
[51] C. Grätzel and S. M. Zakeeruddin, “Recent trends in mesoscopic solar cells based on molecular and nano pigments light harvesters,” Materials Today, vol. 16, no. 1-2, pp. 11–18, 2013.
[52] J. J. Choi, X. Yang, Z. M. Norman, S. J. L. Billinge, and J. S. Owen, “Structure of Methylammonium Lead Iodide Within Mesoporous Titanium Dioxide: Active Material in High-Performance Perovskite Solar Cells,” Nano Letters, vol. 14, no. 1, pp. 127–133, 2013.
[53] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, and H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells,” Nature Communications, vol. 4, no. 1, 2013.
[54] D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, and M. Grätzel, “Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%,” Nature Energy, vol. 1, no. 10, 2016.
[55] J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, and T.-C. Wen, “CH3NH3PbI3 Perovskite/Fullerene Planar-Heterojunction Hybrid Solar Cells,” Advanced Materials, vol. 25, no. 27, pp. 3727–3732, 2013.
[56] J. Y. Jeng, K.-C. Chen, T.-Y. Chiang, P.-Y. Lin, T.-D. Tsai, Y.-C. Chang, T.-F. Guo, P. Chen, T.-C. Wen, and Y.-J. Hsu, “Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells,” Advanced Materials, vol. 26, no. 24, pp. 4107–4113, 2014.
[57] H. Li, W. Shi, W. Huang, E.-P. Yao, J. Han, Z. Chen, S. Liu, Y. Shen, M. Wang, and Y. Yang, “Carbon Quantum Dots/TiOx Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19%,” Nano Letters, vol. 17, no. 4, pp. 2328–2335, 2017.
[58] J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, “Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency,” Energy & Environmental Science, vol. 8, no. 5, pp. 1602–1608, 2015.
[59] C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao, and J. Huang, “Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells,” Nature Communications, vol. 6, no. 1, 2015.
[60] Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang, and J. Huang, “Abnormal crystal growth in CH3NH3PbI3−xClxusing a multi-cycle solution coating process,” Energy & Environmental Science, vol. 8, no. 8, pp. 2464–2470, 2015.
[61] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H.-L. Wang, and A. D. Mohite, “High-efficiency solution-processed perovskite solar cells with millimeter-scale grains,” Science, vol. 347, no. 6221, pp. 522–525, 2015.
[62] J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. (M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. D. Marco, and Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers,” Nature Nanotechnology, vol. 11, no. 1, pp. 75–81, 2015.
[63] P.-W. Liang, C.-C. Chueh, S. T. Williams, and A. K.-Y. Jen, “Roles of Fullerene-Based Interlayers in Enhancing the Performance of Organometal Perovskite Thin-Film Solar Cells,” Advanced Energy Materials, vol. 5, no. 10, p. 1402321, 2015.
[64] J. H. Park, J. Seo, S. Park, S. S. Shin, Y. C. Kim, N. J. Jeon, H.-W. Shin, T. K. Ahn, J. H. Noh, S. C. Yoon, C. S. Hwang, and S. I. Seok, “Efficient CH3NH3PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition,” Advanced Materials, vol. 27, no. 27, pp. 4013–4019, 2015.
[65] Y. Rong, Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A. M. Guloy, and Y. Yao, “Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells,” Nanoscale, vol. 7, no. 24, pp. 10595–10599, 2015.
[66] H. Tanaka, Y. Ohishi, and T. Oku, “Effects of hot airflow during spin-coating process on CH3NH3PbI3-xClx perovskite solar cells,” 2018.
[67] H. Chen, Z. Wei, H. He, X. Zheng, K. S. Wong, and S. Yang, “Solvent Engineering Boosts the Efficiency of Paintable Carbon-Based Perovskite Solar Cells to Beyond 14%,” Advanced Energy Materials, vol. 6, no. 8, p. 1502087, 2016.
[68] W. Li, J. Fan, J. Li, Y. Mai, and L. Wang, “Controllable Grain Morphology of Perovskite Absorber Film by Molecular Self-Assembly toward Efficient Solar Cell Exceeding 17%,” Journal of the American Chemical Society, vol. 137, no. 32, pp. 10399–10405, 2015.
[69] H.-B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, and J. Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells,” Nanoscale, vol. 6, no. 12, p. 6679, 2014.
[70] N. Sakai, S. Pathak, H.-W. Chen, A. A. Haghighirad, S. D. Stranks, T. Miyasaka, and H. J. Snaith, “The mechanism of toluene-assisted crystallization of organic–inorganic perovskites for highly efficient solar cells,” Journal of Materials Chemistry A, vol. 4, no. 12, pp. 4464–4471, 2016.
[71] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. Gray-Weale, U. Bach, Y.-B. Cheng, and L. Spiccia, “A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells,” Angewandte Chemie International Edition, vol. 53, no. 37, pp. 9898–9903, 2014.
[72] Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu, and N. P. Padture, “Room-temperature crystallization of hybrid-perovskite thin films via solvent–solvent extraction for high-performance solar cells,” Journal of Materials Chemistry A, vol. 3, no. 15, pp. 8178–8184, 2015.
[73] P. You and F. Yan, “Organic-Inorganic Hybrid Perovskites for Solar Energy Conversion,” Ferroelectric Materials for Energy Applications, pp. 95–117, 2018.
[74] N. R. Poespawati, I. Dzikri, J. Sulistianto, T. Abuzairi, M. Hariadi, and R. W. Purnamaningsih, “Perovskite Solar Cells Based on Organic-metal halide Perovskite Materials,” 2018 4th International Conference on Nano Electronics Research and Education (ICNERE), 2018.
[75] D. W. D. Quilettes, S. M. Vorpahl, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, and D. S. Ginger, “Impact of microstructure on local carrier lifetime in perovskite solar cells,” Science, vol. 348, no. 6235, pp. 683–686, 2015.
[76] B. S. Tosun and H. W. Hillhouse, “Enhanced Carrier Lifetimes of Pure Iodide Hybrid Perovskite via Vapor-Equilibrated Re-Growth (VERG),” The Journal of Physical Chemistry Letters, vol. 6, no. 13, pp. 2503–2508, 2015.
[77] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang, “Solvent Annealing of Perovskite-Induced Crystal Growth for Photovoltaic-Device Efficiency Enhancement,” Advanced Materials, vol. 26, no. 37, pp. 6503–6509, 2014.
[78] J. Troughton, C. Charbonneau, M. J. Carnie, M. L. Davies, D. A. Worsley, and T. M. Watson, “Rapid processing of perovskite solar cells in under 2.5 seconds,” Journal of Materials Chemistry A, vol. 3, no. 17, pp. 9123–9127, 2015.
[79] J. Troughton, M. J. Carnie, M. L. Davies, C. Charbonneau, E. H. Jewell, D. A. Worsley, and T. M. Watson, “Photonic flash-annealing of lead halide perovskite solar cells in 1 ms,” Journal of Materials Chemistry A, vol. 4, no. 9, pp. 3471–3476, 2016.
[80] B. W. Lavery, S. Kumari, H. Konermann, G. L. Draper, J. Spurgeon, and T. Druffel, “Intense Pulsed Light Sintering of CH3NH3PbI3 Solar Cells,” ACS Applied Materials & Interfaces, vol. 8, no. 13, pp. 8419–8426, 2016.
[81] M. Saliba, K. W. Tan, H. Sai, D. T. Moore, T. Scott, W. Zhang, L. A. Estroff, U. Wiesner, and H. J. Snaith, “Influence of Thermal Processing Protocol upon the Crystallization and Photovoltaic Performance of Organic–Inorganic Lead Trihalide Perovskites,” The Journal of Physical Chemistry C, vol. 118, no. 30, pp. 17171–17177, 2014.
[82] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells,” Nano Letters, vol. 13, no. 4, pp. 1764–1769, 2013.
[83] T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix, and T. Baikie, “Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells,” The Journal of Physical Chemistry C, vol. 118, no. 30, pp. 16458–16462, 2013.
[84] C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis, “Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties,” Inorganic Chemistry, vol. 52, no. 15, pp. 9019–9038, 2013.
[85] N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier, and M. Grätzel, “Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting,” Angewandte Chemie, vol. 126, no. 12, pp. 3215–3221, 2014.
[86] S. Gubbala, V. Chakrapani, V. Kumar, and M. K. Sunkara, “Band-Edge Engineered Hybrid Structures for Dye-Sensitized Solar Cells Based on SnO2 Nanowires,” Advanced Functional Materials, vol. 18, no. 16, pp. 2411–2418, 2008.
[87] D.-Y. Son, J.-H. Im, H.-S. Kim, and N.-G. Park, “11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System,” The Journal of Physical Chemistry C, vol. 118, no. 30, pp. 16567–16573, 2014.
[88] R. Zhang, C. Fei, B. Li, H. Fu, J. Tian, and G. Cao, “Continuous Size Tuning of Monodispersed ZnO Nanoparticles and Its Size Effect on the Performance of Perovskite Solar Cells,” ACS Applied Materials & Interfaces, vol. 9, no. 11, pp. 9785–9794, 2017.
[89] J. Yun, J. Ryu, J. Lee, H. Yu, and J. Jang, “SiO2/TiO2 based hollow nanostructures as scaffold layers and Al-doping in the electron transfer layer for efficient perovskite solar cells,” Journal of Materials Chemistry A, vol. 4, no. 4, pp. 1306–1311, 2016.
[90] A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Gratzel, and H. Han, “A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability,” Science, vol. 345, no. 6194, pp. 295–298, 2014.
[91] S. G. Hashmi, D. Martineau, X. Li, M. Ozkan, A. Tiihonen, M. I. Dar, T. Sarikka, S. M. Zakeeruddin, J. Paltakari, P. D. Lund, and M. Grätzel, “Air Processed Inkjet Infiltrated Carbon Based Printed Perovskite Solar Cells with High Stability and Reproducibility,” Advanced Materials Technologies, vol. 2, no. 1, p. 1600183, 2016.
[92] A. Bera, K. Wu, A. Sheikh, E. Alarousu, O. F. Mohammed, and T. Wu, “Perovskite Oxide SrTiO3 as an Efficient Electron Transporter for Hybrid Perovskite Solar Cells,” The Journal of Physical Chemistry C, vol. 118, no. 49, pp. 28494–28501, 2014.
[93] J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, A. Petrozza, A. Abate, M. K. Nazeeruddin, M. Grätzel, and A. Hagfeldt, “Highly efficient planar perovskite solar cells through band alignment engineering,” Energy & Environmental Science, vol. 8, no. 10, pp. 2928–2934, 2015.
[94] J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, X. Guo, D. Zhuang, C. Liao, J. Mei, and W. Lau, “Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells,” Journal of Materials Chemistry A, vol. 3, no. 22, pp. 11750–11755, 2015.
[95] L. Wang, W. Fu, Z. Gu, C. Fan, X. Yang, H. Li, and H. Chen, “Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer,” J. Mater. Chem. C, vol. 2, no. 43, pp. 9087–9090, 2014.
[96] J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells,” Nano Letters, vol. 14, no. 2, pp. 724–730, 2013.
[97] C.-H. Chiang, Z.-L. Tseng, and C.-G. Wu, “Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process,” J. Mater. Chem. A, vol. 2, no. 38, pp. 15897–15903, 2014.
[98] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, and H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates,” Nature Communications, vol. 4, no. 1, 2013.
[99] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Gratzel, S. Mhaisalkar, and T. C. Sum, “Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3,” Science, vol. 342, no. 6156, pp. 344–347, 2013.
[100] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, and H. J. Snaith, “Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells,” Advanced Functional Materials, vol. 24, no. 1, pp. 151–157, 2013.
[101] R. Liu and K. Xu, “Solvent Engineering for Perovskite solar cells: A Review,” Micro & Nano Letters, 2020.
[102] J. M. Ball, M. M. Lee, A. Hey, and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells,” Energy & Environmental Science, vol. 6, no. 6, p. 1739, 2013.
[103] J. You, Z. Hong, Y. (M. Yang, Q. Chen, M. Cai, T.-B. Song, C.-C. Chen, S. Lu, Y. Liu, H. Zhou, and Y. Yang, “Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility,” ACS Nano, vol. 8, no. 2, pp. 1674–1680, 2014.
[104] Z. Song, S. C. Watthage, A. B. Phillips, and M. J. Heben, “Pathways toward high-performance perovskite solar cells: review of recent advances in organo-metal halide perovskites for photovoltaic applications,” Journal of Photonics for Energy, vol. 6, no. 2, p. 022001, 2016.
[105] Y. Yu, C. Wang, C. R. Grice, N. Shrestha, J. Chen, D. Zhao, W. Liao, A. J. Cimaroli, P. J. Roland, R. J. Ellingson, and Y. Yan, “Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives,” ChemSusChem, vol. 9, no. 23, pp. 3288–3297, 2016.
[106] C. Roldán-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel, and M. K. Nazeeruddin, “High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors,” Energy & Environmental Science, vol. 8, no. 12, pp. 3550–3556, 2015.
[107] Q. Meng, “Energy and interface engineering for perovskite solar cells,” International Photonics and OptoElectronics, 2015.
[108] Z. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson, and M. J. Heben, “Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites,” Chemistry of Materials, vol. 27, no. 13, pp. 4612–4619, 2015.
[109] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, and J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process,” Energy Environ. Sci., vol. 7, no. 7, pp. 2359–2365, 2014.
[110] J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, and N.-G. Park, “Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells,” Nature Nanotechnology, vol. 9, no. 11, pp. 927–932, 2014.
[111] M. Golitko and L. Dussubieux, “Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) and Laser Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS),” The Oxford Handbook of Archaeological Ceramic Analysis, pp. 398–423, 2016.
[112] S. Neralla, S. Yarmolenko, D. Kumar, D. Pai, and J. Sankar, “Cross-Sectional Nanoindentation of Alumina Thin Films Deposited by Pulsed Laser Deposition Process,” Materials, Nondestructive Evaluation, and Pressure Vessels and Piping, 2006.
[113] A. Sivkov, E. Naiden, A. Ivashutenko, and I. Shanenkov, “Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe2O3,” Journal of Magnetism and Magnetic Materials, vol. 405, pp. 158–168, 2016.
[114] M. H. Azhdast, G. Azdasht, H. Lüdeke, K.-D. Lang, and V. Glaw, “Nano particle production by laser ablation and metal sputtering on Si-Wafer substrate,” Advanced Solid State Lasers, 2015.
[115] N. K. Ponon, D. J. Appleby, E. Arac, P. King, S. Ganti, K. S. Kwa, and A. O'neill, “Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films,” Thin Solid Films, vol. 578, pp. 31–37, 2015.
[116] Inc, “Pulsed Laser Deposition Systems - PVD Products,” Pulsed Laser Deposition Systems - PVD Products. [Online]. Available: Http://www.pvdproducts.com/pulsed-laser-deposition-systems. [Accessed: 28-Jan-2020].
[117] A. M. Darwish, S. S. Sarkisov, and D. N. Patel, “Concurrent Multi-Target Laser Ablation for Making Nano-Composite Films,” Applications of Laser Ablation - Thin Film Deposition, Nanomaterial Synthesis and Surface Modification, 2016.
[118] K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, and H. J. Snaith, “Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency,” Energy Environ. Sci., vol. 7, no. 3, pp. 1142–1147, 2014.
[119] C. Aranda, J. Bisquert, and A. Guerrero, “High open – circuit voltatge of pure bromide perovskite solar cells using spiro-ometad as a hole-selective material,” Proceedings of the 3rd International Conference on Perovskite Thin Film Photovoltaics, Photonics and Optoelectronics, 2017.
[120] “Pulsed laser deposition,” Wikipedia, 14-Dec-2019. [Online]. Available: https://en.wikipedia.org/wiki/Pulsed_laser_deposition. [Accessed: 29-Jan-2020].
Cite This Article
  • APA Style

    Ali Husainat, Warsame Ali, Penrose Cofie, John Attia, John Fuller, et al. (2020). Simulation and Analysis Method of Different Back Metals Contact of CH3NH3PbI3 Perovskite Solar Cell Along with Electron Transport Layer TiO2 Using MBMT-MAPLE/PLD. American Journal of Optics and Photonics, 8(1), 6-26. https://doi.org/10.11648/j.ajop.20200801.12

    Copy | Download

    ACS Style

    Ali Husainat; Warsame Ali; Penrose Cofie; John Attia; John Fuller, et al. Simulation and Analysis Method of Different Back Metals Contact of CH3NH3PbI3 Perovskite Solar Cell Along with Electron Transport Layer TiO2 Using MBMT-MAPLE/PLD. Am. J. Opt. Photonics 2020, 8(1), 6-26. doi: 10.11648/j.ajop.20200801.12

    Copy | Download

    AMA Style

    Ali Husainat, Warsame Ali, Penrose Cofie, John Attia, John Fuller, et al. Simulation and Analysis Method of Different Back Metals Contact of CH3NH3PbI3 Perovskite Solar Cell Along with Electron Transport Layer TiO2 Using MBMT-MAPLE/PLD. Am J Opt Photonics. 2020;8(1):6-26. doi: 10.11648/j.ajop.20200801.12

    Copy | Download

  • @article{10.11648/j.ajop.20200801.12,
      author = {Ali Husainat and Warsame Ali and Penrose Cofie and John Attia and John Fuller and Abdalla Darwish},
      title = {Simulation and Analysis Method of Different Back Metals Contact of CH3NH3PbI3 Perovskite Solar Cell Along with Electron Transport Layer TiO2 Using MBMT-MAPLE/PLD},
      journal = {American Journal of Optics and Photonics},
      volume = {8},
      number = {1},
      pages = {6-26},
      doi = {10.11648/j.ajop.20200801.12},
      url = {https://doi.org/10.11648/j.ajop.20200801.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajop.20200801.12},
      abstract = {Many different photovoltaic technologies are being developed for better solar energy conversion. Until now, crystalline Si solar cell represents the dominant photovoltaic technology with a market share of more than 94% with an efficiency between (15%-20%). Organic-inorganic halide Perovskite Solar Cell (PSC) has emerged as the most promising candidate for the next generation high-efficiency solar cell technology that attracted interest from researchers around the world due to their high efficiency of more than 24.% in a short period from (2008-2019) and low fabrication cost. In this paper, we designed a lead-based PSC model with a cell structure of Glass/FTO/TiO2/CH3NH3PBI3/Spiro-OMeTAD/(Au, Ag, Al, Cu, Cr, Cu-graphite alloy, and Pt) and analyzed the structure with different contact materials using Solar Cell Capacitance Simulator (SCAPS-1D) which is well adopted by many researchers to study and analyze the hybrid solar cell. Using the software allows researchers to inexpensively and promptly, the effect of the absorber and the contact materials on the performance of the proposed solar cell model. We also studied the bandgap of the active layer, defect density, thickness, operating temperature, and the fabrication method of the model. Furthermore, the adoption of multibeam multi-target MAPLE and PLD or with acronym MBMT-MAPLE/PLD techniques as a new fabrication method in our simulation program mentioned above. A promising result was achieved. Efficiencies of 27.25%, 26.52%, 18.90%, 25.66%, 22.77%, 27.25%, and 27.25% were obtained for the devices with Au, Ag, Al, Cu, Cr, Pt, and Cu-graphite alloy, respectively. The effect of the work function on the back contact has a significant influence over the FF and efficiency.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Simulation and Analysis Method of Different Back Metals Contact of CH3NH3PbI3 Perovskite Solar Cell Along with Electron Transport Layer TiO2 Using MBMT-MAPLE/PLD
    AU  - Ali Husainat
    AU  - Warsame Ali
    AU  - Penrose Cofie
    AU  - John Attia
    AU  - John Fuller
    AU  - Abdalla Darwish
    Y1  - 2020/02/24
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ajop.20200801.12
    DO  - 10.11648/j.ajop.20200801.12
    T2  - American Journal of Optics and Photonics
    JF  - American Journal of Optics and Photonics
    JO  - American Journal of Optics and Photonics
    SP  - 6
    EP  - 26
    PB  - Science Publishing Group
    SN  - 2330-8494
    UR  - https://doi.org/10.11648/j.ajop.20200801.12
    AB  - Many different photovoltaic technologies are being developed for better solar energy conversion. Until now, crystalline Si solar cell represents the dominant photovoltaic technology with a market share of more than 94% with an efficiency between (15%-20%). Organic-inorganic halide Perovskite Solar Cell (PSC) has emerged as the most promising candidate for the next generation high-efficiency solar cell technology that attracted interest from researchers around the world due to their high efficiency of more than 24.% in a short period from (2008-2019) and low fabrication cost. In this paper, we designed a lead-based PSC model with a cell structure of Glass/FTO/TiO2/CH3NH3PBI3/Spiro-OMeTAD/(Au, Ag, Al, Cu, Cr, Cu-graphite alloy, and Pt) and analyzed the structure with different contact materials using Solar Cell Capacitance Simulator (SCAPS-1D) which is well adopted by many researchers to study and analyze the hybrid solar cell. Using the software allows researchers to inexpensively and promptly, the effect of the absorber and the contact materials on the performance of the proposed solar cell model. We also studied the bandgap of the active layer, defect density, thickness, operating temperature, and the fabrication method of the model. Furthermore, the adoption of multibeam multi-target MAPLE and PLD or with acronym MBMT-MAPLE/PLD techniques as a new fabrication method in our simulation program mentioned above. A promising result was achieved. Efficiencies of 27.25%, 26.52%, 18.90%, 25.66%, 22.77%, 27.25%, and 27.25% were obtained for the devices with Au, Ag, Al, Cu, Cr, Pt, and Cu-graphite alloy, respectively. The effect of the work function on the back contact has a significant influence over the FF and efficiency.
    VL  - 8
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Electrical and Computer Engineering, Prairie View A&M University, Prairie View, USA

  • Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, Prairie View A&M University, Prairie View, USA

  • Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, Prairie View A&M University, Prairie View, USA

  • Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, Prairie View A&M University, Prairie View, USA

  • Department of Electrical and Computer Engineering, Faculty of Electrical Engineering, Prairie View A&M University, Prairie View, USA

  • School of Science, Technology, Engineering and Mathematics (STEM), Faculty of Physics, Dillard University, New Orleans, LA, USA

  • Sections