| Peer-Reviewed

Configuration Interaction Calculations of Energy Levels and Radiative Parameters of Calcium-Like Ions, 22 ≤ Z ≤ 30

Received: 29 March 2016    Accepted: 15 April 2016    Published: 4 May 2016
Views:       Downloads:
Abstract

The energy levels, oscillator strengths, and E1 transition probabilities have been calculated for calcium-like ions with Z = 22 − 30 (excluding iron). The calculations have been executed using the CIV3 and LANL codes for a set of configuration arrays including 63 fine structure levels (in this paper we mentioned for examples about 40 energy levels) belonging to 3p63d2 and 3p63d4l configurations, where l = s, p, d, f. The correlations up to 6l orbitals are included to optimize the wave functions generated by the CIV3 code. In spite of the complexity of the Ca sequence, the present results are in fairly good agreement with the experimental and theoretical data available in the literature. The present study provides calculations of various atomic structure data which are necessary for many fields of researches and applications, especially in the astrophysics and plasma diagnostics.

Published in American Journal of Optics and Photonics (Volume 4, Issue 1)
DOI 10.11648/j.ajop.20160401.11
Page(s) 1-13
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Energy Level, Oscillator Strength, Radiative Rates, Configuration Interaction

References
[1] W. Cady, Phys. Rev. 43 (1933) 322.
[2] E. Alexander, U. Feldman, B. S. Fraenkel, S. Hoory, J. Opt. Soc. Am. 56 (1966) 651.
[3] M. Even-Zohar, B. S. Fraenke1, J. Opt. Soc. Am. 58 (1968) 1420.
[4] B. Warner, R. C. Krikpatrick, Mon. Not. R. Astr. Soc. 144 (1969) 397.
[5] B. Fawcett, R. Cowan, Solar Phys. 31 (1973) 339.
[6] J. Ekberg, Phys. Scr. 23 (1981) 7.
[7] H. Nussbaumer, P. J. Storey, Astron. Astrophys. 113 (1982) 21.
[8] E. Charro, I. Martin, Astrophys. J. 513 (1999) 997.
[9] J. K. Lepson, P. Beiersdorfer, G. V. Brown, D. A. Liedah, S. B. Utter, N. S. Brickhouse, A. K. Dupree, J. S. Kaastra, R. Mewe, S. M. Kahn, Astrophys. J. 578 (2002) 648.
[10] D. C. Morton, Astrophys. J. Suppl. Ser. 149 (2003) 205.
[11] E. Tr¨abert, A. G. Calamai, G. Gwinner, E. J. Knystautas, E. H. Pinnington, A. Wolf, J. Phys. B 36 (2003) 1129.
[12] G. Y. Liang, T. M. Baumann, J. R. C. Lopez-Urrutia, S. W. Epp, H. Tawara, A. Gonchar, P. H. Mokler, G. Zhao, J. Ullrich, Astrophys. J. 696 (2009) 2275.
[13] P. R. Young, K. A. Berrington, A. Lobel, Astron. Astrophys. 432 (2005) 665.
[14] J. Zeng, G. Y. Liang, G. Zhao, J. R. Shi, Mon. Not. R. Astron. Soc. 357 (2005) 440.
[15] T. Holczer, E. Behar, S. Kaspi, Astrophys. J. 632 (2005) 788.
[16] P. R. Young, E. Landi, Astrophys. J. 707 (2009) 173.
[17] G. D. Zanna, Astron. Astrophys. 508 (2009) 501.
[18] G. D. Zanna, Astron. Astrophys. 537 (2012) A38(17pp).
[19] M. C. Witthoeft, N. R. Badnell, Astron. Astrophys. 481 (2008) 543.
[20] P. Quinet, J. E. Hansen, J. Phys. B 29 (1996) 1879.
[21] J. R. Roberts, T. Andersen, G. Sorensen, Astrophys. J. 181 (1973) 567.
[22] Y. Baudinet-Robinet, P. D. Dumont, H. P. Garnir, N. Grevesse, E. Biemont, J. Opt. Soc. Am. 70 (1980) 464.
[23] D. C. Abbott, J. Phys. B 11 (1973) 3479.
[24] S. Kastner, Solar Phys. 151 (1994) 41.
[25] J. Ekberg, U. Feldman, Astrophys. J. Suppl. Ser. 148 (2003) 567.
[26] B. Fawcett, A. Ridgeley, J. Ekberg, Phys. Scr. 21 (1980) 155.
[27] A. Raassen, P. Uylings, Astron. Astrophys. Suppl. Ser. 123 (1997) 147.
[28] U. I. Safronova, W. R. Johnson, D. Kato, S. Ohtani, Phys. Rev. A 63 (2001) 032518 (11pp).
[29] U. I. Safronova, A. S. Safronova, J. Phys. B 43 (2010) 074026 (15pp).
[30] R. Faulkner, M. Wang, P. Dunne, A. Arnesen, F. Heijkenskj, R. Hallin, G. O’Sullivan, J. Phys. B 34 (2001) 593.
[31] E. Biemont, J. E. Hansent, P. Quinets, C. J. Zeippen, J. Phys. B 25 (1992) 5029.
[32] S. Haq, R. Ali, M. Kalyar, M. Raq, A. Nadeem, M. Baig, Eur. Phys. J. D 50 (2008) 1.
[33] A. N. Ryabtsev, E. Y. Kononov, S. S. Churilov, Opt. Spectrosc. 106 (2009) 163.
[34] T.-Y. Zhang, N.-W. Zheng, D.-X. Ma, Int. J. Quant. Chem. 109 (2009) 145.
[35] A. El-maaref, Z. Samak, S. Allam, T. El-Sherbini, Int. J. New. Hor. Phys. 2 (2015)25.
[36] M. Grieve, C. Ramsbottom, Mon. Not. R. Astron. Soc. 424 (2012) 2461.
[37] W. L. Wiese, M. W. Smith, B. M. Miles, Tech. rep., National Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.) (1969).
[38] M. W. Smith, W. L. Wiese, J. Phys. Chem. Ref. Data 2 (1973) 85.
[39] D. C. Morton, Astrophys. J. Suppl. Ser. 77 (1991) 119.
[40] C. Corliss, J. Sugar, J. Phys. Chem. Ref. Data 8 (1979) 1.
[41] J. Sugar, C. Corliss, J. Phys. Chem. Ref. Data 14 Supllement 2 (1985) 1.
[42] J. Sugar, A. Musgrove, J. Phys. Chem. Ref. Data 19 (1990) 527.
[43] J. Sugar, A. Musgrove, J. Phys. Chem. Ref. Data 24 (1995) 1803.
[44] J. R. Fuhr, G. A. Martin, W. L. Wlese, S. M. Younger, J. Phys. Chem. Ref. Data 10 (1981) 305.
[45] J. Fuhr, G. Martin, W. Wlese, J. Phys. Chem. Ref. Data 17 Supplement 4 (1988) 1.
[46] G. Martin, W. Fuhr, W. Wiese, J. Phys. Chem. Ref. Data 17 Supplement 3 (1988) 1.
[47] V. Kaufman, J. Sugar, J. Phys. Chem. Ref. Data 17 (1988) 1679.
[48] T. Shirai, A. Mengoni, Y. Nakai, J. Sugar, W. L. Wiese, K. Mori, H. Sakai, J. Phys. Chem. Ref. Data 21 (1992) 23.
[49] T. Shirai, Y. Nakai, T. Nakagaki, J. Sugar, W. L. Wiese, J. Phys. Chem. Ref. Data 22 (1993) 1279.
[50] T. Shirai, J. Sugar, A. Musgrove, W. L. Wiese, J. Phys. Chem. Ref. Data Monograph 8 (2000) 1.
[51] T. Shirai et al., At. Data Nucl. Data Tables 37 (1987) 235.
[52] A. Hibbert, Comput. Phys. Commun. 9 (1975) 141.
[53] R. Glass, A. Hibbert, Comput. Phys. Commun. 16 (1978) 19.
[54] M. Mohan, A. Hibbert, Phys. Scr. 44 (1991) 158.
[55] A. Hibbert, M. Le Dourneuf, M. Mohan, At. Data Nucl. Data Tables 53 (1993) 23.
[56] H. M. S. Blackford, A. Hibbert, At. Data Nucl. Data Tables 58 (1994) 101.
[57] D. McPeake, A. Hibbert, J. Phys. B 33 (2000) 2809.
[58] A. A. El-Maaref, M. A. M. Uosif, S. H. Allam, Th. M. El-Sherbini, At. Data Nucl. Data Tables 98 (2012) 589.
[59] A. A. El-Maaref, S. H. Allam, Th. M. El-Sherbini, At. Data Nucl. Data Tables 100 (2014) 155.
[60] A. A. El-Maaref, M. Ahmad, S. H. Allam, At. Data Nucl. Data Tables 100 (2014) 781.
[61] M. P. Donnelly, A. Hibbert, Mon. Not. R. Astron. Soc. 302 (1999) 413.
[62] P. Oliver, A. Hibbert, J. Phys. B 40 (2007) 2847.
[63] E. Clementi, C. Roetti, At. Data Nucl. Data Tables 14 (1974) 177.
[64] R. D. Cowan, TheTheory of Atomic Structure and Spectra; University of California Press: Berkeley, CA, USA, 1981.
[65] Th. M. El Sherbini, Z. Physik A 275 (1975) 1.
[66] Th. M. El Sherbini, A. A. Farrag, J. Phys. B 9 (1976) 2797.
[67] NIST Atomic Spectra Database: http://www.nist.gov/pml/data/asd.cfm.
[68] A. Hibbert, Rep. Progr. Phys. 38 (1975) 1217.
[69] A. Hibbert, Phys. Scr. T65 (1996) 104.
[70] A. A. El-Maaref, S. Schippers, A. Muller, Atoms 3 (2015) 2.
[71] J. A Tully, M. J. Seaton, K. A. Berrington, J. Phys. IV 1 (1991) C1: 169.
[72] A. A. El-Maaref, J. Quant. Spectrosc. Radiat. Transf. (2016) 45.
Cite This Article
  • APA Style

    Zaher Samak, Ahmed Abou El-Maaref, Sami Allam, Tharwat El-Sherbini. (2016). Configuration Interaction Calculations of Energy Levels and Radiative Parameters of Calcium-Like Ions, 22 ≤ Z ≤ 30. American Journal of Optics and Photonics, 4(1), 1-13. https://doi.org/10.11648/j.ajop.20160401.11

    Copy | Download

    ACS Style

    Zaher Samak; Ahmed Abou El-Maaref; Sami Allam; Tharwat El-Sherbini. Configuration Interaction Calculations of Energy Levels and Radiative Parameters of Calcium-Like Ions, 22 ≤ Z ≤ 30. Am. J. Opt. Photonics 2016, 4(1), 1-13. doi: 10.11648/j.ajop.20160401.11

    Copy | Download

    AMA Style

    Zaher Samak, Ahmed Abou El-Maaref, Sami Allam, Tharwat El-Sherbini. Configuration Interaction Calculations of Energy Levels and Radiative Parameters of Calcium-Like Ions, 22 ≤ Z ≤ 30. Am J Opt Photonics. 2016;4(1):1-13. doi: 10.11648/j.ajop.20160401.11

    Copy | Download

  • @article{10.11648/j.ajop.20160401.11,
      author = {Zaher Samak and Ahmed Abou El-Maaref and Sami Allam and Tharwat El-Sherbini},
      title = {Configuration Interaction Calculations of Energy Levels and Radiative Parameters of Calcium-Like Ions, 22 ≤ Z ≤ 30},
      journal = {American Journal of Optics and Photonics},
      volume = {4},
      number = {1},
      pages = {1-13},
      doi = {10.11648/j.ajop.20160401.11},
      url = {https://doi.org/10.11648/j.ajop.20160401.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajop.20160401.11},
      abstract = {The energy levels, oscillator strengths, and E1 transition probabilities have been calculated for calcium-like ions with Z = 22 − 30 (excluding iron). The calculations have been executed using the CIV3 and LANL codes for a set of configuration arrays including 63 fine structure levels (in this paper we mentioned for examples about 40 energy levels) belonging to 3p63d2 and 3p63d4l configurations, where l = s, p, d, f. The correlations up to 6l orbitals are included to optimize the wave functions generated by the CIV3 code. In spite of the complexity of the Ca sequence, the present results are in fairly good agreement with the experimental and theoretical data available in the literature. The present study provides calculations of various atomic structure data which are necessary for many fields of researches and applications, especially in the astrophysics and plasma diagnostics.},
     year = {2016}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Configuration Interaction Calculations of Energy Levels and Radiative Parameters of Calcium-Like Ions, 22 ≤ Z ≤ 30
    AU  - Zaher Samak
    AU  - Ahmed Abou El-Maaref
    AU  - Sami Allam
    AU  - Tharwat El-Sherbini
    Y1  - 2016/05/04
    PY  - 2016
    N1  - https://doi.org/10.11648/j.ajop.20160401.11
    DO  - 10.11648/j.ajop.20160401.11
    T2  - American Journal of Optics and Photonics
    JF  - American Journal of Optics and Photonics
    JO  - American Journal of Optics and Photonics
    SP  - 1
    EP  - 13
    PB  - Science Publishing Group
    SN  - 2330-8494
    UR  - https://doi.org/10.11648/j.ajop.20160401.11
    AB  - The energy levels, oscillator strengths, and E1 transition probabilities have been calculated for calcium-like ions with Z = 22 − 30 (excluding iron). The calculations have been executed using the CIV3 and LANL codes for a set of configuration arrays including 63 fine structure levels (in this paper we mentioned for examples about 40 energy levels) belonging to 3p63d2 and 3p63d4l configurations, where l = s, p, d, f. The correlations up to 6l orbitals are included to optimize the wave functions generated by the CIV3 code. In spite of the complexity of the Ca sequence, the present results are in fairly good agreement with the experimental and theoretical data available in the literature. The present study provides calculations of various atomic structure data which are necessary for many fields of researches and applications, especially in the astrophysics and plasma diagnostics.
    VL  - 4
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Cairo University, Giza, Egypt

  • Department of Physics, Al-Azhar University Assiut, Assiut, Egypt

  • Laboratory of Lasers and New Materials, Physics Department, Cairo University, Giza, Egypt

  • Laboratory of Lasers and New Materials, Physics Department, Cairo University, Giza, Egypt

  • Sections