American Journal of Optics and Photonics

| Peer-Reviewed |

Modification of the Coulomb's Law in an Optical Near-Field Atomic Dipole Model

Received: 04 September 2018    Accepted: 25 September 2018    Published: 26 October 2018
Views:       Downloads:

Share This Article

Abstract

In this paper, a model of a dipole with an atomic structure was considered, instead of the standard dipole model with point unlike charges and the Hertzian dipole model, which have significant drawbacks. It is shown that in the atomic dipole the Coulomb's law in the classical formulation does not work. Therefore, the Coulomb's law needs to be modified. A formula is proposed for the force of the dipole that arises between unlike charges in the process of dipole oscillations and the decompensation/compensation of their fields. The representation of the dependence of the interaction force between unlike charges on the distance between them was shown for three zones: the oscillation zone in which the proposed dipole force formula works, the ionization zone with electron shell detachment from the nucleus and coverage zone of the Coulomb's law between the divided charges formed as a result of ionization of the atom. The dynamics of the process of oscillation of the atomic dipole in four phases (quarters of the period) is investigated. It is shown that the reactive energy flows first emerge from the dipole, and then return to it, while the active energy flows always propagate from the dipole to the far zone. The mechanism of wave propagation of the radiation field is shown.

DOI 10.11648/j.ajop.20180602.11
Published in American Journal of Optics and Photonics (Volume 6, Issue 2, June 2018)
Page(s) 20-24
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Coulomb's Law, Intra-Dipole Vectors, Compensation, Lines of Force

References
[1] K. Sainath, F. L. Teixeira, (2014). Spectral-Domain-Based Scattering Analysis of Fields Radiated by Distributed Sources in Planar-Stratified Environments with Arbitrarily Anisotropic Layers. Physical Review E, 90 (6), 1-17.
[2] H. Moon, F. L. Teixeira, B. Donderici, (2014). Stable pseudoanalytical computation of electromagnetic fields from arbitrarily-oriented dipoles in cylindrically stratified media. Journal of Computational Physics, 273, 118-142.
[3] Ch. Christakis, K. Ioannidi, S. Sautbekov, P. Frangos, S. K. Atanov, (2014). The radiation problem from a vertical short dipole antenna above flat and lossy ground. Novel formulation in the spectral domain with closed form analytical solution in the high frequency regime. Elektronika ir Elektrotechnika, 20 (9), 35-38.
[4] Sutinjo, J. O'Sullivan, E. Lenc, R. B. Wayth, S. Padhi, P. Hall, S. J. Tingay, (2015). Understanding instrumental Stokes leakage in Murchison Widefield Array polarimetry. Radio Science, 50 (1), 52-65.
[5] M. Arminjon, (2017). Charge conservation in a gravitational field in the scalar ether theory. Open Physics, 15, 877-890.
[6] Y. M. Morozov and A. S. Lapchuk, (2016). Signal of microstrip scanning near-field optical microscope in far- and near-field zones. Applied Optics, 55 (13), 3468-3477.
[7] H. M. K. Wong, M. K. Dezfouli, S. Axelrod, S. Hughes and A. S. Helmy, (2017). Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering. Physical Review B, 96, 205112.
[8] K. Staliunas, P. Markoš, V. Kuzmiak, (2017). Scattering properties of a PT dipole. Physical Review A, 96 (4), 043852.
[9] J. Yuffa, Y. Gutierrez, J. M. Sanz, R. A. de la Osa, J. M. Saiz, F. González, F. Moreno and G. Videen, (2016). Near- and far-field scattering resonance frequency shift in dielectric and perfect electric conducting cylinders. Journal of the Optical Society of America A, 33 (3), 391-395.
[10] K. Kobayashi, T. Kawazoe, and M. Ohtsu, (2005). Importance of multiple-phonon interactions in molecular dissociation and nanofabrication using optical near fields. IEEE Transactions on Nanotechnology, 4 (5), 517-522.
[11] E. Tucker, J. D’Archangel and G. Boreman, (2017). Near- and far-field investigation of dark and bright higher order resonances in square loop elements at mid-infrared wavelengths. Optics Express, 25 (5), 5594-5608.
[12] D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff and Y. De Wilde, (2015). Mapping the Radiative and the Apparent Nonradiative Local Density of States in the Near Field of a Metallic Nanoantenna. ACS Photonics, 2 (2), 189-193.
[13] R. C. Boutelle, D. Neuhauser, S. Weiss, (2016). Far-Field Super-resolution Detection of Plasmonic Near-Fields. ACS Nano, 10 (8), 7955–7962.
[14] V. S. Sydorenko, Yu. O. Gayday, S. V. Zhyla, (2005). Features of the near field of the Hertz Dipole. Bulletin of the University of Kyiv. Series: Physics & Mathematics, 2, 365–372.
[15] V. S. Sydorenko, Yu. O. Gayday, S. V. Zhyla, O. V. Sinkevych, (2003). Distribution of the Poynting vector in the near field of the Hertz dipole. Bulletin of National Taras Shevchenko University of Kyiv. Radio Physics and Electronics, 1, 55–59.
[16] L. D. Landau, E. M. Lifshits, Theoretical Physics, vol. 2: The Classical Theory of Fields. Moscow: Nauka, 1973, p. 504.
Author Information
  • Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

  • Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

  • Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Cite This Article
  • APA Style

    Dmytro Vasylenko, Petro Kravchuk, Valerii Grygoruk. (2018). Modification of the Coulomb's Law in an Optical Near-Field Atomic Dipole Model. American Journal of Optics and Photonics, 6(2), 20-24. https://doi.org/10.11648/j.ajop.20180602.11

    Copy | Download

    ACS Style

    Dmytro Vasylenko; Petro Kravchuk; Valerii Grygoruk. Modification of the Coulomb's Law in an Optical Near-Field Atomic Dipole Model. Am. J. Opt. Photonics 2018, 6(2), 20-24. doi: 10.11648/j.ajop.20180602.11

    Copy | Download

    AMA Style

    Dmytro Vasylenko, Petro Kravchuk, Valerii Grygoruk. Modification of the Coulomb's Law in an Optical Near-Field Atomic Dipole Model. Am J Opt Photonics. 2018;6(2):20-24. doi: 10.11648/j.ajop.20180602.11

    Copy | Download

  • @article{10.11648/j.ajop.20180602.11,
      author = {Dmytro Vasylenko and Petro Kravchuk and Valerii Grygoruk},
      title = {Modification of the Coulomb's Law in an Optical Near-Field Atomic Dipole Model},
      journal = {American Journal of Optics and Photonics},
      volume = {6},
      number = {2},
      pages = {20-24},
      doi = {10.11648/j.ajop.20180602.11},
      url = {https://doi.org/10.11648/j.ajop.20180602.11},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.ajop.20180602.11},
      abstract = {In this paper, a model of a dipole with an atomic structure was considered, instead of the standard dipole model with point unlike charges and the Hertzian dipole model, which have significant drawbacks. It is shown that in the atomic dipole the Coulomb's law in the classical formulation does not work. Therefore, the Coulomb's law needs to be modified. A formula is proposed for the force of the dipole that arises between unlike charges in the process of dipole oscillations and the decompensation/compensation of their fields. The representation of the dependence of the interaction force between unlike charges on the distance between them was shown for three zones: the oscillation zone in which the proposed dipole force formula works, the ionization zone with electron shell detachment from the nucleus and coverage zone of the Coulomb's law between the divided charges formed as a result of ionization of the atom. The dynamics of the process of oscillation of the atomic dipole in four phases (quarters of the period) is investigated. It is shown that the reactive energy flows first emerge from the dipole, and then return to it, while the active energy flows always propagate from the dipole to the far zone. The mechanism of wave propagation of the radiation field is shown.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Modification of the Coulomb's Law in an Optical Near-Field Atomic Dipole Model
    AU  - Dmytro Vasylenko
    AU  - Petro Kravchuk
    AU  - Valerii Grygoruk
    Y1  - 2018/10/26
    PY  - 2018
    N1  - https://doi.org/10.11648/j.ajop.20180602.11
    DO  - 10.11648/j.ajop.20180602.11
    T2  - American Journal of Optics and Photonics
    JF  - American Journal of Optics and Photonics
    JO  - American Journal of Optics and Photonics
    SP  - 20
    EP  - 24
    PB  - Science Publishing Group
    SN  - 2330-8494
    UR  - https://doi.org/10.11648/j.ajop.20180602.11
    AB  - In this paper, a model of a dipole with an atomic structure was considered, instead of the standard dipole model with point unlike charges and the Hertzian dipole model, which have significant drawbacks. It is shown that in the atomic dipole the Coulomb's law in the classical formulation does not work. Therefore, the Coulomb's law needs to be modified. A formula is proposed for the force of the dipole that arises between unlike charges in the process of dipole oscillations and the decompensation/compensation of their fields. The representation of the dependence of the interaction force between unlike charges on the distance between them was shown for three zones: the oscillation zone in which the proposed dipole force formula works, the ionization zone with electron shell detachment from the nucleus and coverage zone of the Coulomb's law between the divided charges formed as a result of ionization of the atom. The dynamics of the process of oscillation of the atomic dipole in four phases (quarters of the period) is investigated. It is shown that the reactive energy flows first emerge from the dipole, and then return to it, while the active energy flows always propagate from the dipole to the far zone. The mechanism of wave propagation of the radiation field is shown.
    VL  - 6
    IS  - 2
    ER  - 

    Copy | Download

  • Sections