Calculation of the Chemical Composition of Air - PMMA Mixtures Thermal Plasmas
American Journal of Physical Chemistry
Volume 9, Issue 2, June 2020, Pages: 27-35
Received: May 6, 2020; Accepted: May 27, 2020; Published: Jun. 3, 2020
Views 108      Downloads 33
Authors
Kagoné Abdoul Karim, Department of Physics, University Joseph KI - ZERBO, Ouagadougou, Burkina Faso
Kohio Nièssan, Department of Physics, University Joseph KI - ZERBO, Ouagadougou, Burkina Faso
Yaguibou Wêpari Charles, Department of Physics, University Joseph KI - ZERBO, Ouagadougou, Burkina Faso
Koalaga Zacharie, Department of Physics, University Joseph KI - ZERBO, Ouagadougou, Burkina Faso
Zougmoré François, Department of Physics, University Joseph KI - ZERBO, Ouagadougou, Burkina Faso
Article Tools
Follow on us
Abstract
Knowledge of the chemical composition of plasma is necessary for calculations and modeling in thermal plasmas. Indeed, from the knowledge of this composition we can calculate the thermodynamic properties, the transport coefficients and the radiative properties of a plasma medium. In this work, we propose to study at thermodynamic equilibrium the influence of pressure and of the PMMA polymer on the composition of the plasma of the Air - PMMA gas mixture. We are studying in particular the evolution of the density of the species created in this plasma as a function of temperature (5000 - 30000 K) and pressure (1 bar - 10 bar) for variable mixtures at thermodynamic equilibrium. When we want to take into account a large number of chemical species in the plasma, two main methods are usually used, one is based on the law of mass action and the other on the minimization of Gibbs’ free enthalpy. In our study, we used the mass action law method to calculate the composition of plasma. The results obtained show that when the plasma is in thermodynamic equilibrium the densities of the different species present in the plasma are only a function of the temperature, the pressure and the percentage of the polymer in the mixture.
Keywords
Electric Arc, Plasma, Chemical Composition, Density, Polymer, Circuit Breaker
To cite this article
Kagoné Abdoul Karim, Kohio Nièssan, Yaguibou Wêpari Charles, Koalaga Zacharie, Zougmoré François, Calculation of the Chemical Composition of Air - PMMA Mixtures Thermal Plasmas, American Journal of Physical Chemistry. Vol. 9, No. 2, 2020, pp. 27-35. doi: 10.11648/j.ajpc.20200902.12
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
A. Blondel, “Sur le phénomène de l'arc électrique”. J. Phys. Theor. Appl., 1897, 6 (1), pp. 513-520.
[2]
B. Cheminat, “Influence de l’ablation des parois sur les caractéristiques d’un arc électrique laminé ”, Revue Phys. Apll. 24 (1989) 277 – 284.
[3]
Z. Koalaga, “Contribution à l’étude expérimentale et théorique des plasmas d’arcs électriques laminés”. Thèse de doctorat d’université, Clermont Fd 1991.
[4]
V. V. Nossov, B. Hage, B. Jusselin and C. Fiévet, “Simulation of the Thermal Radiation Effect of an Arc on Polymer Walls in Low-Voltage Circuit Breakers”, Technical Physics, 2007, Vol. 52, No. 5, pp. 651–659.
[5]
P. André, W. Bussière, E. Duffour, L. Brunet and J. M. Lombard, “Effects of dielectric on arc plasma pressure and ablation measurement in high – power apparatus”, IEEE transactions on magnetic, vol. 39, N°.1, January 2003.
[6]
B. Cheminat et P. Andanson, “La conduction dans la colonne d’un arc electrique contamine par des vapeurs de cuivre”, J. Phys. D: Appl. Phys. 18 (1985) 2183-2192.
[7]
B. Cheminat, R. Gadaud et P. Andanson,“Vaporisation d’une anode en argent dans le plasma d’un arc électrique”, J. Phys. D: Appl. Phys. 20 (1987) 444-452.
[8]
H. Ouajji, B. Cheminat et P. Andanson, “Modélisation de la colonne d’un arc électrique en présence de vapeur de cuivre”, J. Phys. D: Appl. Phys. 20 (1987) 635-638.
[9]
P. Andanson, A. Lefort et J Roche, “Erosion des contacts électriques sous l’effet d’un arc électrique de forte intensitéˮ, J. Phys D: Appl. Phys., Vol. 12, 1979.
[10]
B. Cheminat et P. Andanson, “Etude expérimentale d’une décharge d’arc électrique contaminée par des vapeurs d’isolants, Revue Phys. Appl. 21 (1986) 187-193.
[11]
F. Baudoin, J-J. Gonzalez and P. Checchin, “Study of the curvature of the electrical arc in low voltage breaking devices: influence of the external magnetic field”, J. Phys. D: Appl. Phys. 38 (2005) 3778–3791.
[12]
P. Andanson et B. Cheminat, “Isothermes d’une colonne d’arc électrique au voisiinage immédiat de la cathode”, J. Phys. D: Appl. Phys.. 15 (1982) L27-30.
[13]
M. Abbaoui and B. Cheminat, “Determination of characteristics of an electric arc plasma contaminated by vapors from insulators”, IEES Transactions on Plasma Science, vol. 16. N°. 1, February 1991.
[14]
H. Salihou, M. Abbaoui, A. Lefort and R. Auby, “Determination of the power lost by I conduction into the cathode at low current arc”, J. Phys. D: Appl. Phys. 28 (1995) 1883-1887.
[15]
B. Melouki, M. Lieutier and A. Lefort, “The correlation between luminous and electric arc characteristics”, J. Phys. D: Appl. Phys. 29 (1996) 2907–2914.
[16]
H. Salihou, J. P. Guillot, M. Abbaoui and A. Lefort, “Anode parameters of short arcs at low current”, J. Phys. D: Appl. Phys. 29 (1996) 2915–2921.
[17]
J. Rossignol, S. Clain and M. Abbaoui, “The modelling of the cathode sheath of an electrical arc in vacuum”, J. Phys. D: Appl. Phys. 36 (2003) 1495–1503
[18]
Z. Koalaga, “Influence of the choice of internal temperatures on the compositionof CxHyOzNt plasmas out of thermodynamic equilibrium: Application to CH2 plasma”, Physics of Plasmas. Vulume 9, Number 11. November 2002.
[19]
Z. Koalaga, “Composition d’équilibre des plasmas de H2, O2 et N2 hors équilibre thermique”, Can. J. Phys. 81: 1095–1108 (2003).
[20]
F. Bendjebbari, P. André, M. Benbakkar, D. Rochette, S. Flazi, D. Vacher, “Plasma Formed in Argon, Acid Nitric and Water Used in Industrial ICP Torches”, Plasma Science and Technology, Vol. 14, No. 8, Aug. 2012.
[21]
P. Andanson et B. Cheminat, “Contamination d’un plasma d’argon par des vapeurs anodiques de cuivre”, Revue de Physique Appliquée, Tome 14, août 1979 p 775.
[22]
P. Andanson et A. Lefort, “Calcul de l’érosion par vaporisation au niveau de la tache cathodique”, J. Phys. D: Appl. Phys., 17 (1984) 2377-2386.
[23]
M. Abbaoui, B. Cheminat et P. Andanson, “Influence de la nature du metal sur la conductivite d’un plasma argon-metal”, J. Phys. D: Appl. Phys. 18 (1985) L159-Ll65.
[24]
A Lefort, M J Parizet, S E El-Fassi and M Abbaoui, “Erosion of graphite electrodes”, J. Phys. D: Appl. Phys. 26 (1993) 1239-1243.
[25]
P. Andre, “Composition and thermodynamic properties of ablated vapours of PMMA, PA6-6, PETP, POM and PE”, J. Phys. D: Appl. Phys. 29 (1996) 1963–1972.
[26]
H. Ouajji, B. Cheminat et P. Andanson, “Composition et conductivité d’un plasma air-cuivre”, J. Phys. D: Appl. Phys. 19 (1986) 1903-1916.
[27]
E. Duffour, P. Malfreyt, “Structure and thermodynamic properties from molecular dynamics simulations of the polyethylene crystal”, Polymer 43 (2002) 6341–6349.
[28]
P André, “The influence of graphite on the composition and thermodynamic properties of plasma formed in ablated vapour of PMMA, PA6-6, PETP, POM and PE used in circuit-breakers”, J. Phys. D: Appl. Phys. 30 (1997) 475–493.
[29]
M. Abbaoui, Z. Koalaga et A. Lefort, “Composition et coefficients de transports des plasmas de matériaux plastiques (polymères)ˮ, Can. J. Phys. 71. 1291 (1993).
[30]
M. Abbaoui, Z. Koalaga et A. Lefort, “Propriétés thermodynamiques et de transport des plasmas issus de la vaporisation des isolants PTFE et PEˮ, J. Phys. III France 2 (1992) 455 - 472.
[31]
P. André and Z. Koalaga, “Composition of a thermal plasma formed from PTFE with copper in non-oxidant atmosphere. Part II: Comparison of a test case with nitrogen”, High Temperature Material Processes 14, 3 (2010) 289.
[32]
P. André, L. Brunet, E. Duffour, and J. M. Lombard, “Composition, pressure and thermodynamic properties calculated in plasma formed in insulator vapours of PC and POM at fixed volume”, Eur. Phys. J. AP 17, 53–64 (2002).
[33]
P. André, L. Brunet, W. Bussière, J. Caillard, J. M. Lombard, and J. P. Picard, “Transport coefficients of plasmas consisting of insulator vapours Application to PE, POM, PMMA PA66 and PC”, Eur. Phys. J. Appl. Phys. 25, 169–182 (2004)
[34]
P. André and A. Lefort, “The influence of thermal disequilibrium on a plasma consisting of insulator vapours”, J. Phys. D: Appl. Phys. 31 (1998) 717–729.
[35]
Z. Koalaga, M. Abbaoui et A. Lefort, “Calcul des propriétés thermodynamiques des plasmas d'isolants CHON”, I. Phys. D: Appl. Phys. 26 (1993) 393-403.
[36]
A. K. Kagoné, “Caractérisation théorique de plasmas thermiques d’arc électrique de mélanges d’air et de vapeur d’eau: Application au disjoncteur basse et moyenne tension”, 2012 Thèse de doctorat d’université (Ouaga I Burkina Faso).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186