Please enter verification code
Confirm
A Theoretical Study of the Solid Solution Phases of LixFePO4
American Journal of Physical Chemistry
Volume 9, Issue 4, December 2020, Pages: 93-100
Received: Nov. 2, 2020; Accepted: Nov. 16, 2020; Published: Nov. 24, 2020
Views 90      Downloads 62
Authors
Jun Yu, Institute of Chemistry& Chemical Engineering, Qinghai University for Nationalities, Xining, China
Shaorui Sun, Beijing Key Laboratory for Green Catalysis and Separation, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, China
Article Tools
Follow on us
Abstract
For the next generation Li-battery anode materials LiFePO4, the forming of the solid solution phase LixFePO4 and the related charge/discharge mechanism are the high light topics recently. In the paper, ab-initio calculation was applied to study the formation and electronic structure of the solid solution of LixFePO4, and a Charge/Discharge model of LiFePO4 was set up based on the calculation results. Due to the high formation energy, LixFePO4 separates into FePO4 and LiFePO4 in bulk system under room temperature. The single solid solution phase LixFePO4 could exists in the nanoscale particle, and it is due to that the relative larger lattice mismatch energy. The nanoscale particle materials should have a good rating performance due to the forming of LixFePO4 in solid solution phase, of which the partially occupied state and the small energy gap between the VBM and the defect state could improve the intrinsic electronic conductivity. In bulk materials, the medium region, which is composed of LixFePO4, is very narrow between the two phases FePO4 and LiFePO4. There is a electron potential well in the region, of which the bottom is at the side of LixFePO4 (x<0.5). The number of electron in the well highly affects the lithium insertion and extraction. In order to efficiently transfer the electron between the potential well and the out circuit, an electron conductor network or layer should be coated on the LiFePO4 particle.
Keywords
LiFePO4, Solid Solution Phase, The Charge/Discharge Model
To cite this article
Jun Yu, Shaorui Sun, A Theoretical Study of the Solid Solution Phases of LixFePO4, American Journal of Physical Chemistry. Vol. 9, No. 4, 2020, pp. 93-100. doi: 10.11648/j.ajpc.20200904.12
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
Hsu, K. F.; Tsay, S. Y. J. Mater. Chem. 2004, 14, 2690.
[2]
Doeff, M. M.; Hu, Y.; McLarnon, F.; Kostecki, R. Electrochem. Solid-State Lett. 2003, 6, A207.
[3]
Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem. Solid-State Lett. 2001, 4, A170.
[4]
Zaghib, K.; Striebel, K.; Guerfi, A.; Shim, J.; Armand, M.; Gauthier, M. Electrochim. Acta 2004, 50, 263.
[5]
Ravet, N.; Goodenough, J. B.; Besner, S.; Simoneau, M.; Hovington, P.; Armand, M. Electrochem. Soc. Meeting Abstr. 1999, 196, 127.
[6]
Dominko, R.; Gaberscek, M.; Drofenik, J.; Bele, M.; Pejovnik, S. Electrochem. Solid-State Lett. 2001, 4, A187.
[7]
Barker, J.; Saidi, M. Y.; Swoyer, J. L. Electrochem. Solid State Lett. 2003, 6, A53.
[8]
Chen, J.; Whittingham, S. Electrochem. Commun. 2006, 8, 855.
[9]
Yonemura, M.; Yamada, A.; Takei, Y.; Sonoyama, N.; Kanno, R., J. Electrochem. Soc. 151, A1352 (2004).
[10]
Yamada, A., Koizumi, H., Sonoyama, N.; Kanno, R. Phase change in LixFePO4. Electrochem. Solid State Lett. 8, A409 (2005).
[11]
Morgan, D.; der Ven, A. V.; Ceder, G.; Electrochem. Solid-State Lett. 2004, 7, A30.
[12]
Ouyang, C. Y.; Shi, S. Q.; Wang, Z. X.; Huang, X. J.; Chen, L. Q.; Phys. Rev. B, 2004, 69, 104303.
[13]
Islam, M. S.; Driscoll, D.; Fisher, C.; Slater, P.; Chem. Mater., 2005, 17, 5085.
[14]
Nishimura, S.; Kobayashi, G.; Ohoyama, K.; Kanno, R.; Yashima, M.; Yamada, A.; Nature Mater., 2008, 7, 707.
[15]
Ellis, B.; Perry, L. K.; Ryan, D. H.; Nazar, L. F.; J. Am. Chem. Soc., 2006, 128, 11416.
[16]
Maxisch, T.; Zhou, F.; Ceder, G.; Phys. Rev. B, 2006, 73, 104301.
[17]
Yamada, A.; Koizumi, H.; Nishimura, S.; Sonoyama, N.; Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y.; Nature Mater., 2006, 5, 357.
[18]
Kobayashi, G.; Nishimura, S. I.; Park, M. S.; Kanno, R.; Yashima, M.; Ida, T.; Yamada, A.; Adv. Funct. Mater. 2009, 19, 395.
[19]
Laffont, L.; Delacourt, C.; Gibot, P.; Wu, M. Y.; Kooyman, P.; Masquelier, C.; Tarascon, J. M.; Chem. Mater. 2006, 18, 5520.
[20]
G. Chen, X. Song, T. J. Richardson, Electrochem. and Solid-State Lett. 2006, 9, A295.
[21]
J. L. Allen, T. R. Jow, J. Wolfenstine, Chem. Mater. 2007, 19, 2108.
[22]
C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nature Mater. 2008, 7, 665.
[23]
C. Delacourt, P. Poizot, J. M. Tarascon, C. Masquelier, Nature Mater. 2005, 4, 254.
[24]
J. Dodd, R. Yazami, B. Fultz, Electrochem. Solid-State Lett. 2006, 9, A151.
[25]
P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J. M. Tarascon, C. Masquelier; Nature Mater. 2008, 7, 741.
[26]
Zhou, F.; Marianetti, C. A.; Cococcioni, M.; Morgan, D.; Ceder, G.; Phys. Rev. B 2004, 69, 201101.
[27]
Zhou, F.; Maxisch, T.; Ceder, G.; Phys. Rev. Lett. 2006, 97, 155704.
[28]
Yiyang Li. A review of recent research on nonequilibrium solid solution behavior in Li X FePO 4. 2018, 323: 142-150.
[29]
Ippei Kishida, Shota Koyama, Yoshiyuki Yokogawa. First-Principles Calculations of Ionic Conduction in Olivine-Type LixFePO4. 2018, 59 (7): 1062-1067.
[30]
Wagiyo Honggowiranto, Honggowiranto Wagiyo, Kartini Evvy, et al. Study Performance of LiFePO4/Graphite Cylindrical Pouch Cell. 2020, 924 (1): 012036-012042.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186