The Effect of Microsilica and Aluminum Metal Powder on the Densification Parameters, Mechanical Properties and Microstructure of Alumina–Mullite Ceramic Composites
Advances in Materials
Volume 4, Issue 4, August 2015, Pages: 80-84
Received: Jun. 26, 2015; Accepted: Jul. 9, 2015; Published: Jul. 28, 2015
Views 4973      Downloads 141
Authors
M. M. S. Wahsh, Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt
H. E. H. Sadek, Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt
S. Abd El-Aleem, Chemistry Department, Faculty of Science, Fayoum University, El-Fayoum, Egypt
H. H. M. Darweesh, Refractories, Ceramics and Building Materials Department, National Research Centre, Cairo, Egypt
Article Tools
Follow on us
Abstract
Microsilica, or silica fume, is an amorphous type of silica mostly collected as byproduct of the silicon and ferro-silicon alloy production. In this work, low shrinkage alumina-mullite ceramic composites were prepared from mixtures of calcined alumina, silica fume and aluminum metal powder and sintered at 1550oC for 2 hrs. The influence of silica fume and aluminum powder on the densification parameter, in situ mullite formed and mechanical properties of sintered samples were studied. The phase composition and the microstructural evolution of the sintered samples were also investigated. The results showed that, silica fume enhances the mechanical properties of sintered samples, while the aluminum powder improves the mullite formation process. Ultra low shrinkage (close to zero), and good mechanical properties (CCS ≈ 70 MPa) of alumina-mullite ceramic composites were achieved. Alumina-mullite ceramic composites are considered a promising material for high temperature applications.
Keywords
Ceramics, X-ray Diffraction, Mechanical Properties, Microstructure
To cite this article
M. M. S. Wahsh, H. E. H. Sadek, S. Abd El-Aleem, H. H. M. Darweesh, The Effect of Microsilica and Aluminum Metal Powder on the Densification Parameters, Mechanical Properties and Microstructure of Alumina–Mullite Ceramic Composites, Advances in Materials. Vol. 4, No. 4, 2015, pp. 80-84. doi: 10.11648/j.am.20150404.12
References
[1]
Siddique R., Khan M.I., Supplementary cementing materials, chapter 2, silica fume, Springer-Verlag Berlin Heidelberg, (2011).
[2]
Wahsh M.M.S., Khattab R.M., Awaad M., Thermo-mechanical properties of mullite/zirconia reinforced alumina ceramic composites, Mater. Design, 41 (2012) 31–36.
[3]
Bakr I.M., Wahsh M.M.S., Fabrication and characterization of multi phase ceramic composites based on zircon–alumina–magnesia mixtures, Mater. Design, 35 (2012) 99-105.
[4]
Medvedovski E., Alumina–mullite ceramics for structural applications, Ceram. Int., 32 (2006) 369–375.
[5]
Aksel C., The effect of mullite on the mechanical properties and thermal shock behaviour of alumina–mullite refractory materials, Ceram. Int., 29 (2003) 183–188.
[6]
Takei T., Kameshima Y., Yasumori A., Okada K., Crystallisation kinetics of mullite in alumina–silica glass fibers, J. Am. Ceram. Soc., 82 (1999) 2876–2880.
[7]
Ghate B.B., Hasselman D.P.H., Spriggs R.M., Synthesis and characterization of high purity, fine grained mullite, Am. Ceram. Soc. Bull., 52 (1973) 670–672.
[8]
Ibrahim D.M., Naga S.M., Kader Z.A., Salam E.A., Cordierite– mullite refractories, Ceram. Int., 21 (1995) 265–269.
[9]
Zhong X.C., Sun G.C., Thermomechanical properties of corundum–mullite–zirconia materials, in: UNITECR ’97, Proc. Unified Int. Tech. Conf. on Refractories, 5th Biennial Worldwide Congress, Refractories—A Worldwide Technology, New Orleans, (1997), 943–952.
[10]
Pask J.A., Importance of starting materials on reactions and haseequilibria in the Al¬2O3-SiO2 system, J. Eur. Ceram. Soc., 16 (1996) 101.
[11]
V. Viswabaskaran, F.D. Gnanam, M. Balasubramanian, Mullitisationbehaviour of calcined clay–alumina mixtures, Ceram. Int. 29, (2003) 561-571.
[12]
Schneider H., Schrener J., Hildmann B.,Structure and properties of mullite, J. Eur. Ceram. Soc., 28 (2008) 329-344.
[13]
Wang J., Piramoon M.R., Ponton C.B., Marcus P.M., A study in short alumina-fiber-reinforced mullite composites, Trans. J. Br. Ceram. Soc. 90 (1991) 105–110.
[14]
Mazdiyasni K.S., Brown L.M., Synthesis and mechanical properties of stoichiometric aluminium silicate (mullite), J. Am. Ceram. Soc., 55 (1972) 548–552.
[15]
Aksel C., The role of fine alumina and mullite particles on the thermomechanicalbehaviour of alumina–mullite refractory materials, Mater. Lett., 57 (2002) 708–714.
[16]
Sedaghat A., Taheri-Nassaj E., Soraru G.D., Ebadzadeh T., Microstructure development and phase evolution of alumina–mullitenanocomposite, Ceram. Int., 40 (2014) 2605–2611.
[17]
Claussen N., Le T., Wu S., Claussen N., Le T., Wu S., Low Shrinkage Reaction Bonded Alumina, J. Eur. Ceram. Soc., 5 (1989) 29-35.
[18]
Claussen N., Travitzky N.A., Wu S., Tailoring of Reaction-Bonded Al2O3 (RBAO) Ceramics, Ceram. Eng. Sci. Proc., 11 (1990) 806-820.
[19]
Claussen N., Wu S., Holz D., Reaction-Bonded of Aluminum Oxide (RBAO) composites: processing reaction mechanisms, J. Eur. Ceram. Soc. 14 (1994) 97-109.
[20]
Wu S., Claussen N., Fabrication and properties of low-shrinkage reaction-bonded mullite, J. Am. Ceram. Soc., 74 (1991) 2460-63.
[21]
Holz D., Pagel S., Bowen C., Wu S.X., Claussen N., Fabrication of low to zero shrinkage reaction-bonded mullite composites, J. Eur. Ceram. Soc., 16 (1996) 255-260.
[22]
She J.H., Schneider H., Inoue T., Suzuki M., Sodeoka S., Ueno K., Fabrication of low-shrinkage reaction-bonded alumina−mullite composites, Mater. Chem. Phys., 68 (2001) 105–109.
[23]
Ruan G., Zhang Z., Yin M., Xu G., Effect of aluminum powder on the synthesis of cordndum-mullite composites, Ceram – Silikáty, 57 (2013) 133-137.
[24]
Aksay I.A., Dabbs D.M., Sarikaya M., Mullite for structural electronic and optical application, J. Am. Ceram. Soc. 74 (1991) 2343–2358.
[25]
Todd R.I., Bourke M.A.M., Borsa C.E., Brook R.J., Neutron diffraction measurements of residual stresses in alumina/SiC nano composites, Acta Mater., 45 (1997) 1791–1800.
[26]
Luo H.H., Zhang F.C., Roberts S.G., Wear resistance of reaction sintered alumina/mullite composites, Mater. Sci. Eng. A 478 (2008) 270–275.
[27]
Kim B.N., Wakayama S., Kawahara M., Characterization of 2-dimesional crack propagation behavior simulation and analysis, Int. J. Fracture 75 (1996) 247–259.
[28]
Naga S.M., Bondioli F., Wahsh M.M.S., El-Omla M., Utilization of granodiorite in the production of porcelain stoneware tiles, Ceram. Int. 38 (2012) 6267–6272.
[29]
Jo W., Kim D. Y., Hwang N. M., effect of interface structure on the microstructural evolution of ceramics,J. Am. Ceram. Soc., 90 (2007) 2293-2295.
[30]
Kumazawa T., Kanzaki S., Asaumi J., Kanzaki S., Sinterability of SiO2-Al2O3 prepared by spray Pyrolysis effect of chemical composition, J. Ceram. Soc. Jpn., 94 (1986) 485-490.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186