Comparative Evaluation of the Photodegradation of Stearic Acid by TiO2 - Modified Cement Under UV Irradiation Through Water Contact Angle and Absorbance Studies
Advances in Materials
Volume 9, Issue 1, March 2020, Pages: 1-7
Received: Nov. 22, 2019; Accepted: Dec. 17, 2019; Published: Mar. 23, 2020
Views 320      Downloads 160
Authors
Aniedi Nyong, Materials Chemistry Research Unit, Department of Chemistry, Faculty of Physical Sciences, Akwa Ibom State University, Akwa Ibom State, Nigeria
Edet Nsi, Materials Chemistry Research Unit, Department of Chemistry, Faculty of Physical Sciences, Akwa Ibom State University, Akwa Ibom State, Nigeria
Joachim Awaka-Ama, Materials Chemistry Research Unit, Department of Chemistry, Faculty of Physical Sciences, Akwa Ibom State University, Akwa Ibom State, Nigeria
Godwin Udo, Materials Chemistry Research Unit, Department of Chemistry, Faculty of Physical Sciences, Akwa Ibom State University, Akwa Ibom State, Nigeria
Article Tools
Follow on us
Abstract
The photodegradation of stearic acid has been studied through evaluation of changes in the contact angles of water and from absorbance measurements. The photodegradation of 0.02 M stearic acid coatings and solutions were initiated by TiO2 nanoparticles of average size of 9.80 ± 2.92 nm embedded in cements in 1.66 wt.%, 3.33 wt.%, 5.0 wt.% and 6.67 wt.% to generate modified cement composites with photocatalytic capability. It was noted that the photodegradation efficiencies increased with the increase in the weight-percent of TiO2 present in the modified cement samples. A modified Cassie-Baxter and the Langmuir-Hinselwood models were used to compute the rate constants, based on changes in the contact angles of water and in the concentration of the stearic acid respectively, on exposure to the UV light source. The modified Cassie-Baxter model successfully provided a route to relate the changes in water contact angle to the rate of photodegradation of a hydrophobic, long-chain stearic acid. The values of the rate constant estimated from both models increased with increase in the amount of TiO2 present in the modified cement samples. However, the rate constant values obtained from the modified Cassie-Baxter model were lower than those obtained from the Langmuir-Hinselwood model. The values of these rate contants were in the range of 0.11-0.50 hr-1 and 0.78-1.33 hr-1 as btained from the modified Cassie-Baxter and Langmuir-Hinselwood models respectively. This disparity in the values was attributed to a higher mobility of the charge carriers and free-radicals that induced the photodegradation in liquid medium as compared to the solid medium.
Keywords
Photodegradation, UV Irradiation, Stearic Acid, Contact Angle, Absorbance
To cite this article
Aniedi Nyong, Edet Nsi, Joachim Awaka-Ama, Godwin Udo, Comparative Evaluation of the Photodegradation of Stearic Acid by TiO2 - Modified Cement Under UV Irradiation Through Water Contact Angle and Absorbance Studies, Advances in Materials. Vol. 9, No. 1, 2020, pp. 1-7. doi: 10.11648/j.am.20200901.11
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
K. M. Lee, S. B. Abd Hamid, C. W. Lai, J. Nanomater. 2015, 1, (2015).
[2]
C. Tizaoui, K. Mezughi, R. Bickley, Desalination, 273, 197, (2011).
[3]
I. Kim, H. Tanaka, Environ. Int., 35 (5), 793, (2009).
[4]
E. Yousif, R. Haddad, SpringerPlus, 2, 398, (2013).
[5]
M. R. Hoffman, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev., 95, 69, (1995).
[6]
N. Smirnova, T. Fesenko, M. Zhukovsky, J. Goworek, A. Eremenko, Nanoscale Res. Lett., 10 (1), 500, (2015).
[7]
T. Zubkov, D. Stahl, T. L. Thompson, D. Panayotov, O. Diwald, J. T. Yates, J. Phy. Chem. B, 109 (32), 15454, (2005).
[8]
J. M. White, J. Szanyi, M. A. Henderson, J. Phy. Chem. B, 107 (34), 9029, (2003).
[9]
P. S. Foran, C. Boxall, K. R. Denison, Langmuir, 28 (51), 17647, (2012).
[10]
J. Kumar, A. Srivastava, A. Bansal, Int. J. Innov. Res. Sci. Eng. Technol., 2 (7), 2688, (2013).
[11]
R. Khataee, V. Heydari, L. Moradkhannejhad, M. Safarpour, S. W. Joo, J. Nanosci. Nanotech., 13, 5109–5114, (2013).
[12]
A. M. Ramirez, K. Demeestere, N. De Belie, T. Mäntylä, E. Levänen, Build. Environ., 45 (4), 832, (2010).
[13]
A. Hadj Aïssa, E. Puzenat, A. Plassais, J M. Herrmann, C. Haehnel, C. Guillard, Appl. Cataly B-Env, 107 (1-2), 1, (2011).
[14]
A. Strini, L. Schiavi, Appl. Cataly. B-Env., 103 (1-2), 226, (2011).
[15]
L. Cassar, A. Beeldens, N. Pimpinelli, and G. L. Guerrini, ‘‘Photocatalysis of Cementitious Materials’’; International RILEM Symposium onPhotocatalysis, Environment and Construction Materials, Vol. 1, pp. 131-145, 2007.
[16]
M. Janus, K. Bubac, J. Zatorska, E. Kusiak-Nejman, A. Czyżewski, A. W. Morawski. Pol. J. Chem. Technol., 17, 96, (2015).
[17]
I. Karatasis, M. S. Katsiotis, V. Likodimos, A. Kontos, G. Papavassiliou, P. Falaras, V. Kilikoglou. Appl. Cataly. B-Env. 95 (1-2), 78, (2009).
[18]
M. Lackhoff, X. Prieto, N. Nestle, F. Dehn, R. Niessner. Appl. Cataly. B-Env., 43 (3), 205, (2003).
[19]
A. Yousouffi, A. Allahverdi, P. Hejazi, Constr. Build Mater., 41, 224, (2013).
[20]
T. Meng, Y. Yu, X. Qian, S. Zhan, K. Qian, Constr Build Mater. 29, 241, (2012).
[21]
Peter Atkins, Physical Chemistry, 6th Ed, 1998, pg 458.
[22]
J. Vicente, T. Gacoin, P. Barboux, J. Boilot, M. Rondet, L. Gueneau, International Journal of Photoenergy, 5, 1, (2003).
[23]
A. Fujishima, T. Rao, D. Tryk, J Photochem Photobiol C. Photochem Rev 1, 1,(2000).
[24]
M. Cho, H. Chung, W. Choi, J. Yoon, Water Res., 38 (4), 1069, (2004).
[25]
M. Fathinia, A. R. Khataee, M. Zarei, and S. Aber, J. Mol. Catal. A: Chem., 333 (1-2), 73, (2010).
[26]
A. Fujishima, K. Honda. Nature, 238 (5358), 3, (1972).
[27]
R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E, Kojima, A. Kitamura. Nature, 388, 431, (1997).
[28]
K. Seki, M. Tachiya, J. Phys. Chem. B, 108 (15), 4806, (2004).
[29]
B. Ruot, A. Plassais, F. Olive, L. Guillot, L., Sol Energy, 83 (10), 1794, (2009).
[30]
K. Hayat, M. A. Gondal, M. M. Khaled, S. Ahmed, and A. M. Shemsi. Appl Catal A- Gen., 393 (1-2), 122, (2011).
[31]
B. Gao, P. S. Yap, T. M Lim, T. T. Lim. Chem. Eng. J., 171 (3), 1098, (2011).
[32]
E. Quagliarini, F. Bondioli, G. B. Goffredo, C. Cordoni, P. Munafò, Constr. Build. Mater., 37, 51, (2012).
[33]
A. Mills, S. Le Hunte, J. Photochem. Photobio., 108 (1), 1, (1997).
[34]
A. V. Emeline, V. Ryabchuk, N. Serpone, J. Photochem. Photobio. A, 133 (1-2), 89, (2000).
[35]
A. Mills, J. Wang, D. F. Ollis, J Catal., 243 (1), 1, (2006)
[36]
A. B. D. Cassie, S. Baxter, T. Faraday Soc., 40, 546, (1944).
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186