| Peer-Reviewed

ZnO Nanowire/N719 Dye/Polythiophene-SWNT Nanocomposite Solid State Dye Sensitized Solar Cells

Received: 29 December 2014    Accepted: 31 December 2014    Published: 23 January 2015
Views:       Downloads:
Abstract

We designed and fabricated high efficiency solid state dye sensitized solar cells based on vertical ZnO nanowire arrays by utilizing a mixture paste of LiI, PMII and solid iodine as electrolyte. Poly thiophene -single wall carbon nanotube (PT-SWNT) composites were synthesized on FTO glass by in situ polymerization and employed as counter electrode to replace the conventionally used expensive Pt electrode. The initial results showed the power conversion efficiency of 2.87 % from the device with PPy-SWNT composite coated on FTO glass as counter electrode.

Published in Automation, Control and Intelligent Systems (Volume 3, Issue 2-1)

This article belongs to the Special Issue Artificial Nano Sensory System

DOI 10.11648/j.acis.s.2015030201.13
Page(s) 12-17
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Nanocomposite, SWNT, PT, Solid State Dye Sensitized Solar Cell

References
[1] B. O’regan and M. Grfitzeli, "A low-cost, high-efficiency solar cell based on dye-sensitized," Nature 353, 24 (1991).
[2] G. H. Guai, Y. Li, C. M. Ng, C. M. Li, and M. B Chan‐Park, "TiO2 composing with pristine, metallic or semiconducting single‐walled carbon nanotubes: which gives the Best Performance for a dye‐sensitized solar cell," ChemPhysChem 13 (10), 2566-2572 (2012).
[3] Y. Xu, C. He, F. Liu, M. Jiao, and S. Yang, "Hybrid hexagonal nanorods of metal nitride clusterfullerene and porphyrin using a supramolecular approach," Journal of Materials Chemistry 21 (35), 13538-13545 (2011).
[4] J. H. Zhao, X. C. Yang, M. Cheng, S. F. Li, and L. C. Sun, "New Organic Dyes with a Phenanthrenequinone Derivative as the pi-Conjugated Bridge for Dye-Sensitized Solar Cells," J. Phys. Chem. C 117 (25), 12936-12941 (2013).
[5] V. Tjoa, J. Chua, S. S. Pramana, J. Wei, S. G. Mhaisalkar, and N. Mathews, "Facile Photochemical Synthesis of Graphene-Pt Nanoparticle Composite for Counter Electrode in Dye Sensitized Solar Cell," Acs Applied Materials & Interfaces 4 (7), 3447-3452 (2012)
[6] G. Yue, J. Wu, Y. Xiao, J. Lin, M. Huang, and Z. Lan, "Application of poly(3,4-ethylenedioxythiophene): polystyrenesulfonate / polypyrrole counter electrode for dye-sensitized solar cells," The Journal of Physical Chemistry C 116 (34), 18057-18063 (2012).
[7] J. Zang, C. M. Li, S.-J. Bao, X. Cui, Q. Bao, and C. Q. Sun, "Template-free electrochemical synthesis of superhydrophilic polypyrrole nanofiber network," Macromolecules 41 (19), 7053-7057 (2008).
[8] S. Thomas, T.G. Deepak, G.S. Anjusree, T.A. Arun, S. V. Nair, and A. S. Nair, "A review on counter electrode materials in dye-sensitized solar cells," Journal of Materials Chemistry A (2014).
[9] S. Siriroj, S. Pimanpang, M. Towannang, W. Maiaugree, S. Phumying, W. Jarernboon, and V. Amornkitbamrung, "High performance dye-sensitized solar cell based on hydrothermally deposited multiwall carbon nanotube counter electrode," Applied Physics Letters 100 (24), 243303-243303-243304 (2012).
[10] W. Jarernboon, S. Pimanpang, S. Maensiri, E. Swatsitang, and V. Amornkitbamrung, "Effects of multiwall carbon nanotubes in reducing microcrack formation on electrophoretically deposited TiO2 film," Journal of Alloys and Compounds 476 (1), 840-846 (2009).
[11] K. Murakoshi, R. Kogure, Y. Wada, and S. Yanagida, "Fabrication of solid-state dye-sensitized TiO2 solar cells combined with polypyrrole," Solar Energy Materials and Solar Cells 55 (1), 113-125 (1998).
[12] T. Kitamura, M. Maitani, M. Matsuda, Y. Wada, and S. Yanagida, "Improved solid-state dye solar cells with polypyrrole using a carbon-based counter electrode," Chemistry Letters 30 (10), 1054-1055 (2001).
[13] R. Cervini, Y. Cheng, and G. Simon, "Solid-state Ru-dye solar cells using polypyrrole as a hole conductor," Journal of Physics D: Applied Physics 37 (1), 13 (2004).
[14] H. Hlura, T.W. Ebbesen, T. Tanigaki, H. Takahashi, Chem. Phys. Lett. 202, 509(1993).
[15] W. A. de Heer, W.S. Bacsa, A. Chatelain, T. Gerfin, R. Humphrey-Baker, L. Forro, and D. Ugarte, "Aligned carbon nanotube films: production and optical and electronic properties," Science 268, 845-847 (1995).
[16] J. S. Liu, T. Tanaka, K. Sivula, A. P. Alivisatos, and J. M. J. Frechet, "Employing end-functional polythio-phene to control the morphology of nanocrystal-polymer composites in hybrid solar cells," Journal of the American Chemical Society 126 (21), 6550-6551 (2004).
[17] Y.-Ch. Liu, B.-J. Hwang, W.-J. Jian, and R. Santhanam, "In situ cyclic voltammetry-surface-enhanced Raman spectroscopy: studies on the doping–undoping of polypyrrole film," Thin Solid Films 374 (1), 85-91 (2000).
[18] J. Duchet, R. Legras, and S. Demoustier-Champagne, "Chemical synthesis of polypyrrole: structure–properties relationship," Synthetic Met 98 (2), 113-122, (1998).
[19] A. B. Gonçalves, A. S. Mangrich, and A. J. G. Zarbin, "Polymerization of pyrrole between the layers of α-Tin (IV) Bis (hydrogenphosphate)," Synthetic Met 114 (2), 119-124 (2000).
[20] R.H Friend, D.D.C Bradley, and P.D. Townsend, "Photo-excitation in conjugated polymers," Journal of Physics D: Applied Physics 20 (11), 1367 (1987).
[21] G Harbeke, D Baeriswyl, H Kiess, and W Kobel, "Polarons and bipolarons in doped polythiophenes," Physica Scripta 1986 (T13), 302 (1986).
[22] R. Yang, W. H. Smyrl, D. F. Evans and W. A. Hendrickson, J. Phys. Chem, 96, 1428(1992).
[23] M. J. Antony and M. Jayakannan, J. Phys. Chem. B, 111, 12772(2007).
[24] P. Galář, B. Dzurňák, P. Malý, J. Čermák, A. Kromka, M. Omastová, and B. Rezek, "Chemical Changes and Photoluminescence Properties of UV Modified Polypyrrole," Int. J. Electrochem. Sci. 8, 57-70 (2013).
[25] Bisquert.J, and Peter.C .Journal of physical chemistry letters,vo.51,issue1,205-207.
[26] Hwang, K. J.; Yoo, S. J.; Kim, S. S.; Kim, J. M.; Shim, W. G.; Kim, S. I.; Lee, J. W. J. Nanosci. Nanotechnol. 2008, 8, 4976.
[27] Leon, C. P.; Kador, L.; Peng, B.; Thelakkat, M. J. Phys. Chem. B 2006, 110(17), 8723.
[28] Finnie, K. S.; Bartlett, J. R.; Woolfrey, J. L. Langmuir 1998, 14, 2744
Cite This Article
  • APA Style

    S. AbdulAmohsin, Sabah Mohammed Mlkat al Mutoki, M. Mohamed. (2015). ZnO Nanowire/N719 Dye/Polythiophene-SWNT Nanocomposite Solid State Dye Sensitized Solar Cells. Automation, Control and Intelligent Systems, 3(2-1), 12-17. https://doi.org/10.11648/j.acis.s.2015030201.13

    Copy | Download

    ACS Style

    S. AbdulAmohsin; Sabah Mohammed Mlkat al Mutoki; M. Mohamed. ZnO Nanowire/N719 Dye/Polythiophene-SWNT Nanocomposite Solid State Dye Sensitized Solar Cells. Autom. Control Intell. Syst. 2015, 3(2-1), 12-17. doi: 10.11648/j.acis.s.2015030201.13

    Copy | Download

    AMA Style

    S. AbdulAmohsin, Sabah Mohammed Mlkat al Mutoki, M. Mohamed. ZnO Nanowire/N719 Dye/Polythiophene-SWNT Nanocomposite Solid State Dye Sensitized Solar Cells. Autom Control Intell Syst. 2015;3(2-1):12-17. doi: 10.11648/j.acis.s.2015030201.13

    Copy | Download

  • @article{10.11648/j.acis.s.2015030201.13,
      author = {S. AbdulAmohsin and Sabah Mohammed Mlkat al Mutoki and M. Mohamed},
      title = {ZnO Nanowire/N719 Dye/Polythiophene-SWNT Nanocomposite Solid State Dye Sensitized Solar Cells},
      journal = {Automation, Control and Intelligent Systems},
      volume = {3},
      number = {2-1},
      pages = {12-17},
      doi = {10.11648/j.acis.s.2015030201.13},
      url = {https://doi.org/10.11648/j.acis.s.2015030201.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.acis.s.2015030201.13},
      abstract = {We designed and fabricated high efficiency solid state dye sensitized solar cells based on vertical ZnO nanowire arrays by utilizing a mixture paste of LiI, PMII and solid iodine as electrolyte. Poly thiophene -single wall carbon nanotube (PT-SWNT) composites were synthesized on FTO glass by in situ polymerization and employed as counter electrode to replace the conventionally used expensive Pt electrode. The initial results showed the power conversion efficiency of 2.87 % from the device with PPy-SWNT composite coated on FTO glass as counter electrode.},
     year = {2015}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - ZnO Nanowire/N719 Dye/Polythiophene-SWNT Nanocomposite Solid State Dye Sensitized Solar Cells
    AU  - S. AbdulAmohsin
    AU  - Sabah Mohammed Mlkat al Mutoki
    AU  - M. Mohamed
    Y1  - 2015/01/23
    PY  - 2015
    N1  - https://doi.org/10.11648/j.acis.s.2015030201.13
    DO  - 10.11648/j.acis.s.2015030201.13
    T2  - Automation, Control and Intelligent Systems
    JF  - Automation, Control and Intelligent Systems
    JO  - Automation, Control and Intelligent Systems
    SP  - 12
    EP  - 17
    PB  - Science Publishing Group
    SN  - 2328-5591
    UR  - https://doi.org/10.11648/j.acis.s.2015030201.13
    AB  - We designed and fabricated high efficiency solid state dye sensitized solar cells based on vertical ZnO nanowire arrays by utilizing a mixture paste of LiI, PMII and solid iodine as electrolyte. Poly thiophene -single wall carbon nanotube (PT-SWNT) composites were synthesized on FTO glass by in situ polymerization and employed as counter electrode to replace the conventionally used expensive Pt electrode. The initial results showed the power conversion efficiency of 2.87 % from the device with PPy-SWNT composite coated on FTO glass as counter electrode.
    VL  - 3
    IS  - 2-1
    ER  - 

    Copy | Download

Author Information
  • Physical Department, Faculty of Science, Thi Qar University , Thi Qar, Iraq.

  • Electrical Department , Al Furat Al Wast University, Technical Institute of Samawa, Samawa, Iraq.

  • Physical Department, Faculty of Science, Thi Qar University , Thi Qar, Iraq.

  • Sections