Segmentation of Cells from 3-D Confocal Images of Live Embryo
International Journal of Intelligent Information Systems
Volume 3, Issue 6-1, December 2014, Pages: 45-48
Received: Oct. 10, 2014; Accepted: Oct. 14, 2014; Published: Oct. 27, 2014
Views 3084      Downloads 144
Ali Zeynali Aaq Qaleh, Faculty of Engineering, Islamic Azad University, Qom, Iran
Seyyed Mahdi Haji Mirahmadi, Software Engineer, Young Researchers and Elite Club, Qazvin Branch, Islamic Azad University, Qazvin, Iran
Article Tools
Follow on us
Partial-differential-equation- based segmentation has been employed to accurately extract the shapes of membranes and nuclei from time lapse confocal microscopy images, taken throughout early Zebrafish embryogenesis. This strategy is a prerequisite for an accurate quantitative analysis of cell shape and morphodynamics during organogenesis and is the basis for an integrated understanding of biological processes. This data will also serve for the measurement of the variability between individuals in a population. The segmentation of cellular structures is achieved by first using an edge-preserving image filtering method for noise reduction and then applying an algorithm for cell shape reconstruction based on the Subjective Surfaces technique.
Partial Differential Equations, Segmentation, Confocal Images, Morphodynamics
To cite this article
Ali Zeynali Aaq Qaleh, Seyyed Mahdi Haji Mirahmadi, Segmentation of Cells from 3-D Confocal Images of Live Embryo, International Journal of Intelligent Information Systems. Special Issue: Research and Practices in Information Systems and Technologies in Developing Countries. Vol. 3, No. 6-1, 2014, pp. 45-48. doi: 10.11648/j.ijiis.s.2014030601.18
A. Sarti, C. O. de Solo´rzano, S. Lockett and R. Malladi, ”A Geometric Model for 3-D Confocal Image Analysis”, IEEE Transactions on Biomedical Engineering, vol. 47, pp. 1600-1609, 2000.
S. Megason and S. Fraser,”Digitizing life at the level of the cell: high- performance laser-scanning microscopy and image analysis for in toto imaging of development,” Mech. Dev., vol. 120, pp. 1407-1420, 2003.
C. B. Kimmel, W. W. Ballard, S. R. Kimmel, B. Ullmann, and Th. F. Schilling, ”Stages of embryonic development of the zebrafish,” Dev. Dyn., vol. 203 , pp. 253-310, 1995.
B. Rizzi., ”3D Zebra Fish Embryo Images Filtering by Nonlinear Partial Differential Equations,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
A. Sarti, R. Malladi, and J. A. Sethian, ”Subjective Surfaces: A Method for Completing Missing Boundaries,” Proceedings of the National Academy of Sciences of the United States of America, vol. 12, pp.6258-6263, 2000.
A. Sarti, R. Malladi, and J. A. Sethian,”Subjective Surfaces: A Geometric Model for Boundary Completion,” International Journal of Computer Vision, vol. 46, pp. 201-221, 2002.
P. Perona and J. Malik,”Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, pp. 629-639, 1990.
V. Caselles, R. Kimmel, and G. Sapiro, ”Geodesic Active Contours,” International Journal of Computer Vision, vol. 22, pp. 61-79, 1997.
S. Osher and J. A. Sethian,”Front propagating with curvature de- pendent speed: Algorithms based on Hamilton Jacobi formulation,” Journal of Computational Physics, vol. 79, pp. 1249, 1988.
L. Iba´nez, W. Schroeder, L. Ng, and B. J. Cates, The ITK Software Guide, 2nd ed, 2005.
W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit: An Object-Oriented Approach To 3D Graphics, 2nd ed., Prentice Hall, 1997.
M. Campana., ”A Framework for 4D-Biomedical Image Process- ing, Visualization and Analysis,” 29th Annual International Confer- ence of the IEEE Engineering in Medicine and Biology Society.
J. D. Ballard,”Generalizing the Hough Transform to Detect Arbitrary Shapes,” Pattern Recognition, vol. 13, pp. 111-122, 1981.
C. Melani.,”Tracking cells in a live zebrafish embryo,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186