| Peer-Reviewed

How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System

Received: 5 January 2018    Accepted: 15 January 2018    Published: 31 January 2018
Views:       Downloads:
Abstract

The effective field theory within a probability distribution technique that accounts for the self-spin correlation functions is used to investigate the dielectrics properties of a nano-octahedral system described by the spin S=1/2 Ising model. The thermal behavior of the polarizations, susceptibilities, and the hysteresis loops are examined in details and even the details to model a ferroelectric system.

Published in Communications (Volume 5, Issue 5)
DOI 10.11648/j.com.20170505.11
Page(s) 51-57
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Transverse Ising Model, Ferroelectric, Dirac, Hamiltonian, Polarization, Hysteresis, Susceptibility

References
[1] R. Gopala Krishnan and S. Seshamma, Bull. Mater. Sci., Vol. 14, No. 6, December 1991, pp. 1349-1352.
[2] Alexander J. Hearmon, Federica Fabrizi, Laurent Ç. Chapon, R. D. Johnson, Dharmalingam Prabhakaran, Physical Review Letters, PRL 108, 237201 (2012).
[3] Martí Gich, Ignasi Fina, Alessio Morelli, Florencio Sánchez, Marin Alexe, Jaume Gàzquez, Josep Fontcuberta and Anna Roig, Adv. Mater. 2014, 26: 4645–4652.
[4] Jaita Paul, Takeshi Nishimatsu, Yashiyuki Kawazoe, Umesh V. Waghmare, Physical Review Letters, PRL 99, 077601 (2007).
[5] Donna C. Arnold, Kevin S. Knight, Finlay D. Morrison, Philip Lightfoot, Physical Review Letters, PRL 102, 027602 (2009).
[6] Y. Park, Solid State Commun. 112 (1999) 167.
[7] E. K. Tan, J. Osman, D. R. Tilley, Solid State Commun. 117 (2001) 59.
[8] Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima, Y. Tokura, Physical Review Letters, PRL 96, 207204 (2006).
[9] K. T. Li, V. C. Lo, Solid State Commun. 132 (2004) 49.
[10] J. M. Wesselinowa, S. Trimper, Phys. Rev. B 69 (2004) 024105.
[11] B. Teng, H. K. Sy, Phys. Rev. B 69 (2004) 104115.
[12] Kevin F. Garrity, Karin M. Rabe, David Vanderbilt, PhysicalReview Letters, PRL 112, 127601 (2014).
[13] T. Kaneyoshi, Phys. A 293 (2001) 200.
[14] T. Kaneyoshi, Phys. A 319 (2003) 355.
[15] Ruixiang Fei, Wei Kang, Li Yang, physical Review Letters, PRL 117, 097601 (2016).
[16] A. OubelKacem, I. Essaoudi, A. Ainane, M. Saber, J. Gonzalez, K. Barner, Ferroelectric films described by the transverse Ising model, Physica B 404 (2009) 4190-4197.
[17] P. G. de Gennes, Solid State Commun. 1 (1963) 132.
[18] R. Blinc, B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics, North- Holland, Amsterdam, 1974.
[19] R. Pirc, R. Blinc, Phys. Rev. B 70 (2004) 134107.
[20] X. Z. Wang, X. Y. Jiao, J. J. Wang, J. Phys. Condens. Matter 4 (1992) 3651.
[21] Y. G. Wang, W. L. Zhong, P. L. Zhong, Phys. Rev. B 53 (1996) 11439.
[22] W. L. Zhong, B. D. Qu, P. L. Zhang, Y. G. Wang, Phys. Rev. B 50 (1994) 12375.
[23] H. X. Cao, Z. Y. Li, J. Phys. Condens. Matter 15 (2003) 6301.
[24] J. M. Wesselinowa, Phys. Stat. Sol. (b) 223 (2001) 737.
[25] C. L. Wang, W. L. Zhong, P. L. Zhang, J. Phys. Condens. Matter 3 (1992) 4749.
[26] C. L. Wang, S. R. P. Smith, D. R. Tilley, J. Phys. Condens. Matter 6 (1994) 9633.
[27] I. B. Misirlioglu, G. Akcay, S. Zhong, S. P. Alpay, J. Appl. Phys. 101 (2007) 036107.
[28] L. Q. Chen, in: C. H. Ahn, K. M. Rabe, J.-M. Triscone (Eds.), Physics of Ferroelectrics: A Modern Perspective, Springer, Berlin, 2007, pp. 363–372.
[29] Y. Watanabe, Phys. Rev. B 57 (1998) 789.
[30] L. W. Zhong, Y. G. Wang, P. L. Zhang, Phys. Lett. A 189 (1994) 121.
[31] D. L. Tao, Y. Z. Wu, Z. Y. Li, Phys. Stat. Sol. (b) 231 (2002) 3.
[32] J. M. Wesselinowa, Phys. Stat. Sol. (b) 231 (2002) 187.
[33] K. lshikawa, K. Yoshikawa, N. Okada, Phys. Rev. B 37 (1988) 5852.
[34] E. V. Colla, A. V. Fokin, Yu. A. Kumzerov, Solid State Commun. 103 (1997) 127.
[35] Alioune Aidara Diouf, Bassirou Lo, Alhadj Hisseine Issaka Ali, Aboubaker Chedikh Beye, American Journal of Nanomaterials, 2016, Vol. 4, No. 1, 1-7.
[36] N. Boccara, Phys. Lett 94 A, 185 (1963).
[37] F. Zernike, Physica (Ultrecht) 7, 565 (1940).
[38] J. W. Tucker, J. Phys. A: Math. Gen. 27 (1994) 659.
[39] Oscar Iglesias, Amilcar Labarta, Journal of Magnetism and Magnetic Materials 738, 290 (2005).
[40] Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, F. Dujardin, J. Supercond Nov Magn, 10.1007/s10948-014-2571-7 (2014).
[41] Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, F. Dujardin, Chinese Jornal of Physics, 10.1016/j.cjph.2016.06.012 (2016).
Cite This Article
  • APA Style

    Alioune Aidara Diouf, Bassirou Lo, Abdoulaye Ndiaye Dione, Cheikh Birahim Ndao, Aboubaker Chedikh Béye. (2018). How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System. Communications, 5(5), 51-57. https://doi.org/10.11648/j.com.20170505.11

    Copy | Download

    ACS Style

    Alioune Aidara Diouf; Bassirou Lo; Abdoulaye Ndiaye Dione; Cheikh Birahim Ndao; Aboubaker Chedikh Béye. How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System. Communications. 2018, 5(5), 51-57. doi: 10.11648/j.com.20170505.11

    Copy | Download

    AMA Style

    Alioune Aidara Diouf, Bassirou Lo, Abdoulaye Ndiaye Dione, Cheikh Birahim Ndao, Aboubaker Chedikh Béye. How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System. Communications. 2018;5(5):51-57. doi: 10.11648/j.com.20170505.11

    Copy | Download

  • @article{10.11648/j.com.20170505.11,
      author = {Alioune Aidara Diouf and Bassirou Lo and Abdoulaye Ndiaye Dione and Cheikh Birahim Ndao and Aboubaker Chedikh Béye},
      title = {How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System},
      journal = {Communications},
      volume = {5},
      number = {5},
      pages = {51-57},
      doi = {10.11648/j.com.20170505.11},
      url = {https://doi.org/10.11648/j.com.20170505.11},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.com.20170505.11},
      abstract = {The effective field theory within a probability distribution technique that accounts for the self-spin correlation functions is used to investigate the dielectrics properties of a nano-octahedral system described by the spin S=1/2 Ising model. The thermal behavior of the polarizations, susceptibilities, and the hysteresis loops are examined in details and even the details to model a ferroelectric system.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - How to Model an Ising Ferroelectric System: Case of the Investigation of the Dielectrics Properties of a Nano-Octahedral Ferroelectric System
    AU  - Alioune Aidara Diouf
    AU  - Bassirou Lo
    AU  - Abdoulaye Ndiaye Dione
    AU  - Cheikh Birahim Ndao
    AU  - Aboubaker Chedikh Béye
    Y1  - 2018/01/31
    PY  - 2018
    N1  - https://doi.org/10.11648/j.com.20170505.11
    DO  - 10.11648/j.com.20170505.11
    T2  - Communications
    JF  - Communications
    JO  - Communications
    SP  - 51
    EP  - 57
    PB  - Science Publishing Group
    SN  - 2328-5923
    UR  - https://doi.org/10.11648/j.com.20170505.11
    AB  - The effective field theory within a probability distribution technique that accounts for the self-spin correlation functions is used to investigate the dielectrics properties of a nano-octahedral system described by the spin S=1/2 Ising model. The thermal behavior of the polarizations, susceptibilities, and the hysteresis loops are examined in details and even the details to model a ferroelectric system.
    VL  - 5
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal; Department of Nanoscience & Nanotechnology Research, Dakar American University of Science & Technology, Somone, Senegal

  • Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal

  • Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal

  • Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal

  • Faculty of Sciences & Techniques, Cheikh Anta Diop University, Dakar, Senegal

  • Sections