Definitions of Real Order Integrals and Derivatives Using Operator Approach
Pure and Applied Mathematics Journal
Volume 2, Issue 1, February 2013, Pages: 1-9
Received: Dec. 11, 2012; Published: Feb. 20, 2013
Views 3166      Downloads 102
Author
Raoelina Andriambololona, Theoretical Physics Dept., Antananarivo, Madagascar, Institut National des Sciences et Techniques Nucléaires (INSTN-Madagascar), Boite Postale 4279, Antananarivo 101, Madagascar
Article Tools
PDF
Follow on us
Abstract
The set E of functions f fulfilling some conditions is taken to be the definition domain of s-order integral operator J^s (iterative integral), first for any positive integer s and after for any positive s (fractional, transcendental π and e). The definition of k-order derivative operator D^k for any positive k (fractional, transcendental π and e) is derived from the definition of J^s. Some properties of J^sand D^k are given and demonstrated. The method is based on the properties of Euler’s gamma and beta functions.
Keywords
Gamma Functions; Beta Functions; Integrals; Derivatives; Arbitrary Orders; Operators
To cite this article
Raoelina Andriambololona, Definitions of Real Order Integrals and Derivatives Using Operator Approach, Pure and Applied Mathematics Journal. Vol. 2, No. 1, 2013, pp. 1-9. doi: 10.11648/j.pamj.20130201.11
References
[1]
S. Miller, Kenneth, "An introduction to the fractional calculus and the fractional differential equations", Bertram Ross (Editor). Publisher: John Wiley and Sons 1st edition ,1993, ISBN 0-471-58884-9.
[2]
B. Oldham Keith and Spanier Jerome, "The fractional calculus. Theory and Application of differentiation and integration to arbitrary order" (Mathematics in Science and engineering). Publisher: Academic Press, Nov 1974, ISBN 0-12-525550-0.
[3]
Zavada, "Operator of fractional derivative in the complex plane", Institute of Physics, Academy of Sciences of Czech Republic, 1997.
[4]
F .Dubois, A. C Galucio, N. Point, "Introduction à la dérivation fractionaire. Théorie et Applications", http://www.mathu-psud.fr/~fdubois/travaux/evolution/ananelly-07/techinge-2010/dgp-fractionnaire-mars2010.pdf, 29 Mars 2010.
[5]
Raoelina Andriambololona, Tokiniaina Ranaivoson, Rakotoson Hanitriarivo, Roland Raboanary, , "Two definitions of fractional derivatives of power functions". Institut National des Sciences et Techniques Nucleaires (INSTN-Madagascar), 2012, arXiv:1204.1493.
[6]
Raoelina Andriambololona, "Algèbre linéaire et multilinéaire." Applications. 3 tomes. Collection LIRA-INSTN Madagascar, Antananarivo, Madagascar, 1986 Tome 1, pp 2-59.
[7]
E.T. Whittaker, and G.N. Watson, "A course of modern analysis", Cambridge University Press, Cambridge, 1965.
[8]
R. Herrmann, "Fractional Calculus. An introduction for Physicist", World Scientific Publishing, Singapore, 2011.
[9]
E. Artin, "The Gamma Function", Holt, Rinehart and Winston, New York, 1964.
[10]
S.C. Krantz, "The Gamma and beta functions" § 13.1 in handbook of complex analysis, Birkhauser, Boston, MA, 1999, pp.155-158.
[11]
Raoelina Andriambololona, Tokiniaina Ranaivoson, Rakotoson Hanitriarivo, "Definition of complex order integrals and derivatives using operator approach", INSTN preprint 120829, arXiv 1409.400. Published in IJLRST, Vol.1,Issue 4:Page No.317-323, November-December(2012), ISSN (online):2278-5299, http://www.mnkjournals.com/ijlrts.htm
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186