Generating Functions for Generalized Mock Theta Functions
Pure and Applied Mathematics Journal
Volume 2, Issue 2, April 2013, Pages: 62-70
Received: Jan. 6, 2013; Published: Apr. 2, 2013
Views 2723      Downloads 122
Author
Sameena Saba, Lucknow University, Lucknow, India
Article Tools
PDF
Follow on us
Abstract
We consider generalized mock theta functions and give generating functions for the partial generalized mock theta functions.
Keywords
Generating Function, Mock Theta Function and Hypergeometric Series
To cite this article
Sameena Saba, Generating Functions for Generalized Mock Theta Functions, Pure and Applied Mathematics Journal. Vol. 2, No. 2, 2013, pp. 62-70. doi: 10.11648/j.pamj.20130202.13
References
[1]
R. P. Agarwal, Certain basic hypergeometric identities associated with mock theta functions, Quart. J. Math. (Oxford) 20 (1968), 121-128.
[2]
G. E. Andrews, On basic hypergeometric series, mock theta functions and partitions (I), Quart. J. Math. (Oxford) (2) 17 (1966), 64-80.
[3]
S. Ramanujan, Collected Papers, Cambridge University Press, 1972, reprinted Chelsea, New York, 1962.
[4]
T. M. Rassias, S.N. Singh and H.M. Srivastava, Some q-generating functions associated with basic multiple hypergeometric series, Comp. and Math. with app. 27(1) (1994), 33-39.
[5]
S. Saba, A study of a generalization of Ramanujan’s sixth order and third order mock theta functions, Appl. Math. 2(5), (2012), 157-165.
[6]
S. Saba., Bilateral generalization of fifth and eighth order mock theta functions, J. Math. (IOSR) 4(5), (2013), 9-23.
[7]
S. Saba, B. Srivastava, A generalization of fifth and seventh order mock theta functions and their partial sums, Global J. Sci. Frontier Reaserch,11(8), (2011), 82-89.
[8]
A. K. Srivastava, On partial sum of mock theta functions of order three, Proc. India Acad. Sci. 107 (1997), 1-12.
[9]
B. Srivastava, Ramanujan’s fifth order and tenth order mock theta functions- A generalization (Communicated).
[10]
B. Srivastava, On a generalization of Ramanujan’s seventh order mock theta functions (Accepted).
[11]
B. Srivastava, Ramanujan’s mock theta functions, Math. J. Okayama Univ. 47 (2005), 163-174.
[12]
[12] G.N. Watson, The final problem: An account of the mock theta functions, J. London Math. Soc. 11 (1936) 55-80
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186