Derivation of Schrödinger Equation from a Variational Principle
Pure and Applied Mathematics Journal
Volume 2, Issue 4, August 2013, Pages: 146-148
Received: Mar. 29, 2013; Published: Aug. 30, 2013
Views 2461      Downloads 137
Author
Sami. H. Altoum, Umm Al-qura University –KSA-University College of Al- Qunfudah, Zip code 21912 – box 1109
Article Tools
PDF
Follow on us
Abstract
The aim of this research is to derive Schrödinger equation from calculus of variations (variational principle), so we use the methodology of calculus of variations. The variational principle one of great scientific significance as they provide a unified approach to various mathematical and physical problems and yield fundamental exploratory ideas.
Keywords
Schrödinger Equation, Variatinal Principle, Hamiltonian-Jacobi Equation
To cite this article
Sami. H. Altoum, Derivation of Schrödinger Equation from a Variational Principle, Pure and Applied Mathematics Journal. Vol. 2, No. 4, 2013, pp. 146-148. doi: 10.11648/j.pamj.20130204.12
References
[1]
Abraham Albert Ungar –Analytic Hyperbolic Geometry and Albert Einstein's Special Theory Relativity-World Scientific publishing Co-Pte.Ltd, (2008).
[2]
Al Fred Grany, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press (1998).
[3]
Aubin Thierry, Differential Geometry-American Mathematical Society (2001).
[4]
Aurel Bejancu &Hani Reda Faran-Foliations and Geometric Structures, Springer Adordrecht, the Netherlands (2006).
[5]
Bluman G.W & Kumei. S, Symmetry and Differential Equations New York: Springer-Verlag (1998).
[6]
David Bleaker-Gauge Theory and Variational Principle, Addison- Wesley Publishing Company, (1981).
[7]
Differential Geometry and the calculus of Variations, Report Hermann-New York and London, (1968).
[8]
Edmund Bertschinger-Introduction to Tenser Calculus for General Relativity, (2002).
[9]
M. Lee. John-Introduction to Smooth Manifolds-Springer Verlag, (2002).
[10]
Elsgolts,L., Differential Equations and Calculus of variations, Mir Publishers,Moscow,1973.
[11]
Lyusternik,L,A., The shortest Lines:Varitional Problems, Mir Publishers,Moscow,1976.
[12]
Courant, R. and Hilbert,D. ,Methods of Mathematical Physics,Vols.1 and 2,Wiley – Interscince, New York,1953.
[13]
Hardy,G.,Littlewood,J.E.and Polya,G.,Inqualities,(Paperback edition),Cambrige University Press,London,1988.
[14]
Tonti,E.,Int. J. Engineering Sci.,22,P.1343,1984.
[15]
Vladimirov,V.S.,A Collection of problems of the Equations of Mathematical Physics, Mir Publishers,Moscow,1986.
[16]
Komkov,V.,Variational Principles of Continuum Mechanics with Engineering Applications,Vol.1,D.Reidel Publishing Co.,Dordecht,Holland,1985.
[17]
Nirenberg,L.,Topic in Calculus of Variations (edited by M.Giaquinta),P.100,Springer – Verlag,Berlin 1989.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186