Visualization of Minkowski Patch
Pure and Applied Mathematics Journal
Volume 3, Issue 6, December 2014, Pages: 132-136
Received: Nov. 25, 2014; Accepted: Nov. 28, 2014; Published: Dec. 8, 2014
Views 2865      Downloads 146
Author
Rania Bahgat Mohamed Amer, Department of Physics and Mathematics Engineering, Faculty of Engineering/ P.O. 44519/ Zagazig University, Egypt
Article Tools
Follow on us
Abstract
This study is an introduction to visualize Minkowskian (n, 1) geometry for all n ³1. The Minkowski geometry naturally encodes the ideas of inertial frames, time and space dilation. Moreover, it also includes studying Minkowski patch which is the natural structure of Minkowski space.
Keywords
Minkowski Space, Einstein Space, Minkowski Patch, Improper Point, Crooked Surface
To cite this article
Rania Bahgat Mohamed Amer, Visualization of Minkowski Patch, Pure and Applied Mathematics Journal. Vol. 3, No. 6, 2014, pp. 132-136. doi: 10.11648/j.pamj.20140306.14
References
[1]
Izumiya, S. and Saji, K., The mandala of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space and "flat" spacelike surface, Journal of Singularities,Vol.2, (2010), 92—127.
[2]
L´opez, R., Differential Geometry of Curves and Surfaces in Lorentz-Minkowski space, Mini-Course taught at the Instituto de Matem´atica e Estat´ıstica (IME-USP) University of Sao Paulo, Brasil, October 18, 2008.
[3]
Izumiya, S. and Yıldırım, H., Slant Geometry of Spacelike Hypersurfaces in the Lightcone, Journal of the Mathematical Society of Japan, Vol. 63, Number 3 (2011), 715—752. lp
[4]
Goldman, W. M., Crooked Surfaces and Anti-De Sitter Geometry, arXiv:1302.4911[math.DG] from Cornell University Library, February 20, 2013.
[5]
Barbot, T., Charette, V., Drumm, T., Goldman, W. M., and Melnick, K., A primer on the (2 + 1) Einstein universe, Recent Developments in Pseudo-Riemannian Geometry journal, European Mathematical Society, (2008), 179—230.
[6]
Drumm, T. and Goldman, W. M., The geometry of crooked planes, Journal of Topology Vol. 38 (1999), No. 2, 323—351.
[7]
Burelle, J. P., Charette, V., Drumm, T. and Goldman, W. M., Crooked Halfspaces, arXiv:1211.4177 [math.DG] from Cornell University Library, October 3, 2012.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186