Fixed-point Theorems in G-complete Fuzzy Metric Spaces
Pure and Applied Mathematics Journal
Volume 4, Issue 4, August 2015, Pages: 159-163
Received: Jun. 25, 2015; Accepted: Jul. 13, 2015; Published: Jul. 30, 2015
Views 3605      Downloads 92
Authors
Naser Abbasi, Department of Mathematics, Lorestan University, Khoramabad, Iran
Hamid Mottaghi Golshan, Department of Mathematics, Lorestan University, Khoramabad, Iran
Mahmood Shakori, Department of Mathematics, Lorestan University, Khoramabad, Iran
Article Tools
Follow on us
Abstract
In the present paper we introduce generalized contraction mapping in fuzzy metric space and some fixed-point theorems for G-complete fuzzy metric space are proved. Our results generalize and extend many known results in metric spaces to a (non-Archimedean) fuzzy metric space in the in the sense of George and Veeramani [George A, Veeramani P, On some results in fuzzy metric spaces, Fuzzy Sets and Systems 1994;64:395-9].
Keywords
Fuzzy Metric Spaces, Generalized Contraction Mapping, G-Complete
To cite this article
Naser Abbasi, Hamid Mottaghi Golshan, Mahmood Shakori, Fixed-point Theorems in G-complete Fuzzy Metric Spaces, Pure and Applied Mathematics Journal. Vol. 4, No. 4, 2015, pp. 159-163. doi: 10.11648/j.pamj.20150404.14
References
[1]
L. B. Ciric. Generalized contractions and fixed-point theorems. Publ. Inst. Math. (Beograd) (N.S.),12(26):19-26, 1971.
[2]
L. B. Ciric. Fixed points for generalized multi-valued contractions. Mat. Vesnik, 9(24):265-272,1972.
[3]
L. B.Ciric. On fixed points of generalized contractions on probabilistic metric spaces. Publ. Inst.Math. (Beograd) (N.S.), 18(32):71-78, 1975.
[4]
A. George and P. Veeramani. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 64(3):395{399, 1994.
[5]
M. Grabiec. Fixed points in fuzzy metric spaces. Fuzzy Sets and Systems, 27(3):385{389, 1988.
[6]
V. Gregori and A. Sapena. On fixed-point theorems in fuzzy metric spaces. Fuzzy Sets and Systems, 125(2):245-252, 2002.
[7]
I. Kramosil and J. Michalek. Fuzzy metrics and statistical metric spaces. Kybernetika (Prague), 11(5):336-344, 1975.
[8]
D.Mihet. Fuzzy-contractive mappings in non-Archimedean fuzzy metric spaces. Fuzzy Sets and Systems, 159(6):739-744, 2008.
[9]
E. Pap, O. Hadzic, and R. Mesiar. A fixed point theorem in probabilistic metric spaces and an application. J. Math. Anal. Appl., 202(2):433-449, 1996.
[10]
J. u. Rodriguez Lopez and S. Romaguera. The Hausdorff fuzzy metric on compact sets. Fuzzy Sets and Systems, 147(2):273-283, 2004.
[11]
S. Romaguera, A. Sapena, and P. Tirado. The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words. Topology Appl., 154(10):2196-2203, 2007.
[12]
B. Schweizer and A. Sklar. Statistical metric spaces. Pacic J. Math., 10:313-334, 1960.
[13]
R. M. Tardi. Contraction maps on probabilistic metric spaces. J. Math. Anal. Appl., 165(2):517-523, 1992.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186