On Geometries in Affine Plane
Applied and Computational Mathematics
Volume 2, Issue 6, December 2013, Pages: 127-129
Received: Sep. 30, 2013; Published: Nov. 20, 2013
Views 2511      Downloads 128
Authors
Abdullah Kurudirek, Department of Mathematics Education, Ishik University, Arbil, Iraq
Hüseyin Akça, Department of Mathematics Education, Ishik University, Arbil, Iraq
Mehmet Erdoğan, Suleyman Demirel University, Almaty, Kazakhstan
Article Tools
PDF
Follow on us
Abstract
So far, in different articles and books the concepts of modern definition of geometry and Minkowskian, Galilean planes and spaces have been introduced. In this paper, we are going to describe geometry that is improved by W. Thurston and then we are going to introduce you to geometries that are suitable to this description in 2 dimensional planes.
Keywords
Non-Euclidean Geometry, Isometric, Galilean Geometry, Minkowskian Geometry, Affine Plane
To cite this article
Abdullah Kurudirek, Hüseyin Akça, Mehmet Erdoğan, On Geometries in Affine Plane, Applied and Computational Mathematics. Vol. 2, No. 6, 2013, pp. 127-129. doi: 10.11648/j.acm.20130206.13
References
[1]
Scott P. The geometries of 3-manifods. Bull. London Math. Soc.15, 1983, n.56, p.401-487.
[2]
Vincent Hugh. Using Geometric Algebra to Interactively Model the Geometry of Euclidean and non-Euclidean Spaces. February, 2007.
[3]
Артыкбаев А. Соколов Д.Д. Геометрия в целом в плоском пространстве-времени. Ташкент. Изд. «Фан». 1991 г.
[4]
Artıkbayev A., Kurudirek A., Akça H. Occurrence of Galilean Geometry. Applied and Computational Mathematics Vol. 2, No. 5, 2013, pp. 115-117. doi: 10.11648/j.acm.20130205.11
[5]
Yaglom, I.M. A Simple Non-Euclidean Geometry and Its Physical Basis, by Springer-Verlag New York Inc. 1979.
[6]
Klein, F., Vergleichende Betrachtungen uber neure geometrische Forschungen. Gesammelte mathematische Abhandlungen, Vol. I, 1921, pp. 460-497. (English version is found in Sommerville, D. Μ. Υ., Bibliography of Non-Euclidean Geometry, 2nd ed., Chelsea, New York, 1970.)
[7]
Klein, F., "Uber die sogenannte Nicht-Euklidische Geometrie," Gesammelte Math Abh I: 254-305, 311-343, 344-350, 353-383, 1921.
[8]
Klein, F., Vorlesungen iiber nicht-Euklidische Geometrie. Springer, Berlin, 1928.
[9]
Ross, W. Skyler B.S. NON-EUCLIDEAN GEOMETRY University of Maine, 2000.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186