Archive
Special Issues
The Taylor Vortex and the Driven Cavity Problems in the Stream Function-Vorticity Formulation
Applied and Computational Mathematics
Volume 3, Issue 6, December 2014, Pages: 337-342
Received: Dec. 15, 2014; Accepted: Dec. 24, 2014; Published: Jan. 4, 2015
Authors
Blanca Bermúdez Juárez, Faculty of Computer Science, Autonomous University of Puebla (BUAP), Puebla, México
René Posadas Hernández, Faculty of Physics and Mathematics, Autonomous University of Puebla (BUAP), Puebla, México
Wuiyevaldo Fermín Guerrero Sánchez, Faculty of Physics and Mathematics, Autonomous University of Puebla (BUAP), Puebla, México
Article Tools
Abstract
In this work, two problems will be presented: The Taylor Vortex problem and the Driven Cavity problem. Both problems are solved using the Stream function-Vorticity formulation of the Navier-Stokes equations in 2D. Results are obtained using two methods: A fixed point iterative method and another one working with matrixes A and B resulting from the discretization of the Laplacian and the advective term, respectively. This second method resulted faster than the fixed point iterative one.
Keywords
Taylor Vortex Problem, Driven Cavity Problem, Navier-Stokes Equations, Stream Funtion-Vorticity Formulation
Blanca Bermúdez Juárez, René Posadas Hernández, Wuiyevaldo Fermín Guerrero Sánchez, The Taylor Vortex and the Driven Cavity Problems in the Stream Function-Vorticity Formulation, Applied and Computational Mathematics. Vol. 3, No. 6, 2014, pp. 337-342. doi: 10.11648/j.acm.20140306.18
References
[1]
Nicolás A., A finite element approach to the Kuramoto-Sivashinski equation, Advances in Numerical Equations and Optimization, Siam (1991).
[2]
Bermúdez B. and Juárez L., Numerical solution of an advection-diffusion equation, Información Tecnológica (2014) 25(1):151-160
[3]
Bermúdez B., Nicolás A., Sánchez F. J., Buendía E., Operator Splitting and upwinding for the Navier-Stokes equations, Computational Mechanics (1997) 20 (5): 474-477
[4]
Nicolás A., Bermúdez B., 2D incompressible viscous flows at moderate and high Reynolds numbers, CMES (2004): 6(5): 441-451.
[5]
Nicolás A., Bermúdez B., 2D Thermal/Isothermal incompressible viscous flows, International Journal for Numerical Methods in Fluids (2005) 48: 349-366
[6]
Bermúdez B., Nicolás A., Isothermal/Thermal Incompressible Viscous Fluid Flows with the Velocity-Vorticity Formulation, Información Tecnológica (2010) 21(3): 39-49.
[7]
Bermúdez B. and Nicolás A., The Taylor Vortex and the Driven Cavity Problems by the Velocity-Vorticity Formulation, Procedings 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (2010).
[8]
Goyon, O., High-Reynolds numbers solutions of Navier-Stokes equations using incremental unknowns, Comput. Methods Appl. Mech. Engrg. 130, (1996) pp. 319-335.
[9]
Glowinski R., Finite Element methods for the numerical simulation of incompressible viscous flow. Introduction to the control of the Navier-Stokes equations, Lectures in Applied Mathematics (1991), AMS, 28.
[10]
Ghia U., Guia K. N. and Shin C. T., High-Re Solutions for Incompressible Flow Using the Navier-Stokes equations and a Multigrid Method, Journal of Computational Physics (1982): 48, 387-411.
[11]
Anson D. K., Mullin T. & Cliffe K. A. A numerical and experimental investigation of a new solution in the Taylor vortex problemJ. Fluid Mech, (1988) 475 – 487.
[12]
Adams, J.; Swarztrauber, P; Sweet, R. 1980: FISHPACK: A Package of Fortran Subprograms for the Solution of Separable Elliptic PDE`s, The National Center for Atmospheric Research, Boulder, Colorado, USA, 1980.
[13]
Nicolás-Carrizosa, A. and Bermúdez-Juárez, B., Onset of two-dimesional turbulence with high Reynolds numbers in the Navier-Stokes equations, Coupled Problems 2011.
PUBLICATION SERVICES