Numerical Study of Convective Heat Transfer on the Power Law Fluid over a Vertical Exponentially Stretching Cylinder
Applied and Computational Mathematics
Volume 4, Issue 5, October 2015, Pages: 346-350
Received: Jun. 18, 2015; Accepted: Jun. 27, 2015; Published: Aug. 21, 2015
Views 3554      Downloads 99
Authors
M. Naseer, Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
M. Y. Malik, Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan
Abdul Rehman, Department of Mathematics, University of Balochistan, Quetta, Pakistan
Article Tools
Follow on us
Abstract
The present paper is the study of boundary layer flow and heat transfer of Power law fluid flowing over a vertical exponentially stretching cylinder along its axial direction. The governing partial differential equations and the associated boundary conditions are reduced to nonlinear ordinary differential equations after using the boundary layer approximation and similarity transformations. The obtained system of nonlinear ordinary differential equations subject to the boundary conditions is solved numerically with the help of Fehlberg method. The effects of Power law index , Reynolds number , Prandtl number , the natural convection parameter and local Reynolds number are presented through graphs. The skin friction coefficient and Nusselt number are presented through tables for different parameters.The present paper is the study of boundary layer flow and heat transfer of Power law fluid flowing over a vertical exponentially stretching cylinder along its axial direction. The governing partial differential equations and the associated boundary conditions are reduced to nonlinear ordinary differential equations after using the boundary layer approximation and similarity transformations. The obtained system of nonlinear ordinary differential equations subject to the boundary conditions is solved numerically with the help of Fehlberg method. The effects of Power law index , Reynolds number , Prandtl number , the natural convection parameter λ and local Reynolds number Rea are presented through graphs. The skin friction coefficient and Nusselt number are presented through tables for different parameters.
Keywords
Boundary Layer Flow, Exponential Stretching, Vertical Cylinder, Power Law Fluid, Natural Convection Heat Transfer, Fehlberg Method
To cite this article
M. Naseer, M. Y. Malik, Abdul Rehman, Numerical Study of Convective Heat Transfer on the Power Law Fluid over a Vertical Exponentially Stretching Cylinder, Applied and Computational Mathematics. Vol. 4, No. 5, 2015, pp. 346-350. doi: 10.11648/j.acm.20150405.13
References
[1]
L.J. Crane (1970) , Flow past a stretching plate, ZAMP 21 645-647 .
[2]
D. R. Jeng, T. C. A. Chang and K. Dewitt (1986), ASME J. Heat Transfer 108 532-539 .
[3]
F. Labropulu, D. Li and I. Pop , (2010)., Non-orthogonal stagnation-point flow towards a stretching surface in a non-Newtonian fluid with heat transfer, Int. J. of Ther. Sci. 49 1042-1050 .
[4]
E. Magyari and B. Keller (1999), Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface, J PHYS D, 32 (5) 577-585
[5]
R.Ellahi, (2009), Comm. Nonl. Sci. Num. Simu., 14 1377-1384.
[6]
M. Y. Malik, M. Naseer, S. Nadeem and Abdul Rehman, (2013), Appl Nanosci. DOI 10.1007/s13204-013-0267-0
[7]
Elbashbeshy and E.M.A, (2001) , Arch. Mech. 53 (6) 643-651.
[8]
E.Sanjayanand and S.K.Khan, (2005), Int.J.Heat Mass Transfer 48 1534-1542
[9]
E.Sanjayanand and S.K.Khan, (2006), Int. J. Therm.Sci. 45 819-828.
[10]
W. R. Schowlter (1960), A.I.Ch.E.J. 6 24-28
[11]
J. N. Kapur and R. C. Srivastave (1963), ZAMP 14 383-388
[12]
S. Y. Lee and W. F. Ames (1966), A.I.Ch.E.J. 12 700-708
[13]
V. G. Fox, L. E. Erickson and L. T. Fan (1969), A.I.Ch.E.J. 14 726-736
[14]
H. I. Anderson and B. S. Dandapat (1991), Appl. Anal. Continuous Media 1 339-347
[15]
I. A. Hassanien, A. A. Abdullah, R. S. R. Gorla (1989) , Math. Comput. Model. 28 105-116
[16]
M. S. Abel, P. S. Datti and N. Mahesha (2009), Int. J. Heat Mass Transfer 52 2902-2913
[17]
S. Nadeem, S. Abbasbandy and M. Hussain (2009), Z Naturforch. 64a 575-582
[18]
M. Naseer, M. Y. Malik, S. Nadeem, Abdul Rehman (2014), The boundary layer flow of hyperbolic tangent fluid over a vertical exponentially stretching cylinder, Alex.Eng. Jour. 53(3) 747-750
[19]
Abdul Rehman, S. Nadeem and M. Y. Malik (2013), J Power Tech 93(2) 122-132
[20]
C.Y.Wang (1989) , Z Angew Math Mech 69 418-420
[21]
A. Ishak, R. Nazar and I. Pop (2008), App. Math. Mod. 32 2059-2066
[22]
I.A. Hassanien, A.A. Abdullah and R.S.R. Gorla (1998), Math. Comput. Model. 28 105-116
[23]
S. Nadeem and Anwar Hussain (2010), Zeitschrift fur Naturforschung. 65a 1-9
[24]
A.Ishak, R. Nazar and I. Pop (2011), Int J Nonlinear Mech 46 1017-1021
[25]
C. Y. Wang (2012), Commun. Nonlinear Sci. Numer. Simulat, 17 1098-1103.
[26]
Abdul Rehman , S.Nadeem , S.Iqbal, M.Y.Malik,and M.Naseer, (2013), Proc IMechE Part N : J Nanoengineering and Nanosystems, DOI: 10.1177/1740349913517872
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186