Smarandachely Adjacent-Vertex-Distinguishing Proper Edge Chromatic Number of CmKn
Applied and Computational Mathematics
Volume 5, Issue 5, October 2016, Pages: 202-206
Received: Oct. 16, 2016; Published: Oct. 17, 2016
Views 2855      Downloads 104
Author
Shunqin Liu, School of Information & Technology, Xiamen University Tan Kah Kee College, Zhangzhou, China
Article Tools
Follow on us
Abstract
According to different conditions, researchers have defined a great deal of coloring problems and the corresponding chromatic numbers. Such as, adjacent-vertex-distinguishing total chromatic number, adjacent-vertex-distinguishing proper edge chromatic number, smarandachely-adjacent-vertex-distinguishing proper edge chromatic number, smarandachely-adjacent-vertex-distinguishing proper total chromatic number. And we focus on the smarandachely adjacent-vertex-distinguishing proper edge chromatic number in this paper, study the smarandachely adjacent-vertex-distinguishing proper edge chromatic number of joint graph CmKn.
Keywords
Graph Theory, Joint Graph, Smarandachely Adjacent-Vertex-Distinguishing Proper Edge Chromatic Number
To cite this article
Shunqin Liu, Smarandachely Adjacent-Vertex-Distinguishing Proper Edge Chromatic Number of CmKn, Applied and Computational Mathematics. Vol. 5, No. 5, 2016, pp. 202-206. doi: 10.11648/j.acm.20160505.13
References
[1]
Liu Shun-qin, Chen Xiang-en. “Smarandachely Adjacent-Vertex-distinguishing proper edge coloring of ”. vol.41, pp. 155-158. August. 2015.
[2]
Bondy. J .A. MURTY U S R. Graph Theory. London. Springer.2008.
[3]
Zhang Zhong-fu, Chen Xiang-en, Li Jing-wen. “On adjacent –vertex-distinguishing total coloring of graphs.” Sci. China. Ser. vol. 48. pp. 289-299. June. 1997.
[4]
Chen Xiang-en, Zhan-fu, “Adjacent-Vertex-Distinguishing Total Chromatic Number of Pm×Kn,” Journal of Mathematical Research and Exposition, Dalian. vol. A26, pp. 489-494. August. 2015.
[5]
Liu Shun-qin, Chen Xiang-en. “Smarandachely Adjacent-Vertex-distinguishing proper edge coloring of ”. vol.37,pp.139-145.April.2011.
[6]
Tian Jing-jing. “The Smarandachely Adjacent –Vertex –Eege Coloring of Some Mycielski’s Graph”. J. of. Math (PRC). vol. 32. pp. 723-728. April 2012.
[7]
Qiang Hui-ying, Li mu-chun. “A Bound on Vertex Distinguishing Total Coloring of Graphs with Distance Constrant for Recurrent Event Data”.Acta Mathematicae Applicatae Sinica. vol. 34. pp. 554-559. May. 2011.
[8]
Tian Jing-jing, Deng Fang-an. “Adjacent Vertex-Distinguishing VE-Total Chromatic Number of the Crown Graph Cm.Fn and Cm.Cn”.Mathematics in Practice and Theory. vol. 41. pp. 189-192. August. 2011.
[9]
Tian Jing-jing. “The Smarandachely Adjacent –Vertex –Eege Coloring of Some Mycielski’s Graph”. J. of. Math(PRC). vol. 32. pp. 723-728. April 2012.
[10]
Lin Sun, Xiaohan Cheng, Jianliang Wu. “The Adjacent Vertex Distinguishing Total Coloring of Planar Graphs without Adjacent 4-cycles” J. Comb. Optim. DOI 10.1007/S10878-016-0004-1.11 March.2016.
[11]
Xiaohan Cheng, Guanghui Wang, Jianliang Wu. “The Adjacent Vertex Distinguishing Total Chromatic Numbers of Planar Graphs with △=10” J. Comb. Optim. DOI. 1007/S10878-016-9995-x.04 February.2016.
[12]
Huijuan Wang, Bin Liu, Yan Gu, Xin Zhang.“Total Coloring of Planar Graphs without Adjacent short cycles” J. Comb. Optim. DOI.1007/S10878-015-9954-y.16. September. 2015.
[13]
Liu Hua, Feng Jianhua, Ma Shaoxian.”Adjacent Vertex-Distinguishing Edges coloring of Sm . Sn” Journal of East China Jiao-tong University. vol. 24. pp. 157-158. October. 2007.
[14]
Zhang Donghan, Zhang Zhongfu. “The Upper Bound of Adjacent Vertex Strongly Distinguishing Total Chromatic Number of the Graph”. Advances of Mathematics. vol. 40. No. 2. pp. 168-172. April. 2011.
[15]
Zhang Z F, Liu L Z, Wang J F. “Adjacent strong edge coloring of graphs”. Appl Math Lett. vol. 15. pp. 623-626. April. 2002.
[16]
Shunqin Liu. “Several Kinds of Chromatic Numbers of Multi-fan Graphs”. Applied and Computational Mathematics. vol. 5. No. 3. pp. 133-137. June. 2016.
[17]
Wang YQ, Sun Q, Tao X, Shen L.”Plane graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable. Sci. China A. vol. 41. pp. 95-104. February. 2011.
[18]
Wang B, Wu JL, Wang HJ. “Total coloring of planar graphs without chordal short cycles”. Graphs Comb. Optim. vol. 60: 777-791. 2014.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186