Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections
Applied and Computational Mathematics
Volume 7, Issue 3, June 2018, Pages: 94-100
Received: Nov. 9, 2017; Accepted: Dec. 5, 2017; Published: Jul. 5, 2018
Views 501      Downloads 44
Author
Michael Fundator, Division of Behavioral and Social Sciences and Education, National Academies of Sciences, Engineering, Medicine, Washington, USA
Article Tools
Follow on us
Abstract
Isoperimetric, Milman reverse, Hilbert, Widder, Fan-Taussky-Todd, Landau, and Fortuin–Kasteleyn–Ginibre (FKG) inequalities in n dimensions in investigations of multidimensional estimators support the use of James-Stein estimator against classical least squares as applied to Cumulant Analysis, Associate Random Variables, and Time Series Analysis.
Keywords
Multidimensional Time Model, James-Stein Estimator, Sampling and Functional Inequalities
To cite this article
Michael Fundator, Geometrical, Algebraic, Functional and Correlation Inequalities Applied in Support of James-Stein Estimator for Multidimensional Projections, Applied and Computational Mathematics. Vol. 7, No. 3, 2018, pp. 94-100. doi: 10.11648/j.acm.20180703.14
Copyright
Copyright © 2018 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
M. Fundator Applications of Multidimensional Time Model for Probability Cumulative Function for Parameter and Risk Reduction. In JSM Proceedings Health Policy Statistics Section Alexandria, VA: American Statistical Association. 433-441.
[2]
M. Fundator. Multidimensional Time Model for Probability Cumulative Function. In JSM Proceedings Health Policy Statistics Section. 4029-4039.
[3]
M. Fundator. Testing Statistical Hypothesis in Light of Mathematical Aspects in Analysis of Probability doi:10.20944/preprints201607.0069. v1.
[4]
M. Fundator Application of Multidimensional time model for probability Cumulative Function to Brownian motion on fractals in chemical reactions (44th Middle Atlantic Regional Meeting, June/9-12/16, Riverdale, NY) Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0167 In preparation for publication.
[5]
Michael Fundator Application of Multidimensional time model for probability Cumulative Function to Brownian motion on fractals in chemical reactions (Northeast Regional Meeting, Binghamton, NY, October/5-8/16). Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0168 In preparation for publication.
[6]
Michael Fundator Applications of Multidimensional Time Model for Probability Cumulative Function for design and analysis of stepped wedge randomized trials. Academia Journal of Scientific Research (ISSN 2315-7712) DOI: 10.15413/ajsr.2016.0169 In preparation for publication.
[7]
Michael Fundator Multidimensional Time Model for Probability Cumulative Function and Connections Between Deterministic Computations and Probabilities Journal of Mathematics and System Science 7 (2017) 101-109 doi: 10.17265/2159-5291/2017.04.001.
[8]
N. Bohr, H. A. Kramers, J. C. Slater The quantum Theory of Radiation.
[9]
J. Hendry Bohr-Kramers-Slater: A Virtual Theory of Virtual Oscillators and Its Role in the History of Quantum Mechanics. A. N.
[10]
M. P. Bianchi A BGK-type model for a gas mixture undergoing reversible reaction.
[11]
H. A. Kramers “Brownian motion in a field of force and the diffusion model of chemical reactions.” Physica, 7, 4, 284-304 (1940).
[12]
R. von Mises “Probability, Statistics and Truth”.
[13]
P. Morters “Lecture notes.”
[14]
D. R. Brillinger “Moments, cumulants, and some applications to stationary random processes”.
[15]
Y. L. Tong, “Relationship between stochastic inequalities and some classical mathematical inequalities,” Journal of Inequalities and Applications, vol. 1, no. 1, pp. 85-98, 1997.
[16]
J. D Esary, F Proschan, D. W Walkup “Association of random variables with applications” Ann. Math. Statist., 38 (1976), pp. 1466–1474
[17]
Paul Richard Halmos “Lectures on Boolean Algebras” Van Nostrand.
[18]
Khinchin “Three pearls of Number theory”.
[19]
V Blåsjö The Evolution of the Isoperimetric Problem https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/blasjo526.pdf.
[20]
Sariel Har-Peled The Johnson-Lindenstrauss Lemma.
[21]
R. Tapia The Isoperimetric Problem Revisited: Extracting a Short Proof of Sufficiency from Euler's 1744 Approach to Necessity.
[22]
P J. H Pineyro Gergonne; The isoperimetric problem and the Steiner's symmetrization.
[23]
Gergonne, J. D.: Goeometrie. Recherche de la surface plane de moindre contour, entre toutes celles de m^eme etendue, et du corps de moindre surface, entre tous ceux de m^eme volume, Annales de Gergonne 4 (1813-1814), 338-343.
[24]
Hilbert D. “Uber die Darstellung definiter Formen als Summe von Formenquadraten” Math Ann. 32, 342-350 (88).
[25]
I. Schur, Bemerkungungen zur Theorie der beschr ankten Bilinearformen mit endlich vielen Ver andlichen, J. reine angew. Math., 140 (11).
[26]
D. V. Widder, An inequality related to one of Hilbert’s, J. London Math. Soc. 4, 194-198.
[27]
Frazer C. Note on Hilber’s inequality, J. London Math. Soc. 21/46 pp. 7-9.
[28]
G. J. O. Jameson Hilbert’s inequality and related results Notes
[29]
G. H. Hardy, “Prolegomena to a chapter on inequalities.”
[30]
G. H. Hardy, J. E. Littlewood and G. P´olya, Inequalities, 2nd ed., Cambridge University Press.
[31]
Mitrinovic, Dragoslav S. Analytic Inequalities.
[32]
G. D. Handler Hilbert and Hardy type inequalities.
[33]
H. S. Wilf, Finite sections of some classical inequalities, Ergebnisse der Mathematik, Band 52.
[34]
Minkowski, Hermann (1896). Geometrie der Zahlen. Leipzig: Teubner.
[35]
Milman, Vitali D. (1986). "Inégalité de Brunn-Minkowski inverse et applications à la théorie locale des espaces normés. [An inverse form of the Brunn-Minkowski inequality, with applications to the local theory of normed spaces]". C. R. Acad. Sci. Paris Sér. I Math. 302 (1): 25–28.
[36]
E. F. Beckenbach and R. Bellman. “Inequalities”, Springer, Berlin, 1983.
[37]
Fan. K, O. Taussky and J. Todd. Discrete analogues of inequalities of wirtinger. Monatsh, Math, 59 (1995), 73-90.
[38]
C. Stein, “Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution,”in Proc. Third Berkeley Symp. OnMath. Statist. and Prob., vol. 1, pp. 197-206.
[39]
C. Stein. Estimation of the mean of a multivariate normal distribution. Ann. Stat., 9 (6): 1135–1151.
[40]
D. E. A. Giles. et al The positive-part Stein-rule estimator and tests of hypotheses. Economics Letters 26 (1988): 49-52.
[41]
Fortuin, C. M.; Kasteleyn, P. W.; Ginibre, J. Correlation inequalities on some partially ordered sets. Comm. Math. Phys. 22 (1971), no. 2, 89--103.
[42]
R. A. L. Carter et al Unbiased Estimation of the MSE Matrix of Stein-Rule Estimators, Confidence Ellipsoids, and Hypothesis Testing.
[43]
H. M. Hudson “A Natural Identity for exponential families with applications in multiparameter estimation” The Annals of Statistics V. 6, N 3.
[44]
Z-G Xiao et al A simple new proof of Fan-Taussky-Todd inequalities.
[45]
H. Alzer Converses of two inequalities of Ky Fan, O. Taussky, and J. Todd Journal of Mathematical Analysis and ApplicationsVolume 161, Issue 1, October/91, 142-147https://doi.org/10.1016/0022-247X (91)90365-7.
ADDRESS
Science Publishing Group
548 FASHION AVENUE
NEW YORK, NY 10018
U.S.A.
Tel: (001)347-688-8931