Rainfall Variability and Linear Trend Models on North-West Part of Bangladesh for the Last 40 Years
American Journal of Applied Mathematics
Volume 4, Issue 3, June 2016, Pages: 158-162
Received: Feb. 26, 2016; Accepted: May 13, 2016; Published: Jun. 4, 2016
Views 3997      Downloads 201
M. Anisur Rahman, Department of Mathematics, Islamic University, Kushtia, Bangladesh
S. M. Mostafa Kamal, Department of Mathematics, Islamic University, Kushtia, Bangladesh
M. Maruf Billah, Department of Mathematics, Islamic University, Kushtia, Bangladesh
Article Tools
Follow on us
Rainfall has been extensively considered as one of the initial point towards the apprehension of climate change courses. Bangladesh is recently experiencing climate change impact related to hazards like cyclone, rainfall, flood, draught etc. Climate variable like rainfall is the most important parameter which is linked with agricultural aspects too for this country. Most of the rain occurred during monsoon period in Bangladesh. This study investigates temporal variability of rainfall and liner trend models on the North-West part of Bangladesh over the period of 1975-2014 using data from the Bangladesh Meteorological Department. We computed and analyzed the linear trend models by using least square estimation. We estimated mean with standard deviation, cross-correlation and linear trends of annual and monsoon rainfall using MS Excel and SPSS v21. The variability of rainfall between the stations was measured by correlation test. The annual and monsoon rainfall has been found in decreasing trends in recent times. In some areas in the North-Western part of the country, the amount of annual and monsoon mean rainfall may be decreased abruptly comparing with average normal rainfall all over the country. The linear trend analysis of rainfall reveals a bit different trend for the last four decades. The observed data and linear trend line shows the decreasing trend of annual rainfall rate is 0.102 mm per year, whereas the decreasing trend of monsoon season rainfall rate is 0.080 mm per year. The time series statistical analysis of this study also provided the information about the correlation coefficients of rainfall among the selected five stations of the South-West region. The result of this study would hopefully help the planners and program managers to take necessary actions and to measure disaster management, agricultural production, drought mitigation, flood control etc.
Variability, Linear Trend, Rainfall, Correlation, North-West, Bangladesh
To cite this article
M. Anisur Rahman, S. M. Mostafa Kamal, M. Maruf Billah, Rainfall Variability and Linear Trend Models on North-West Part of Bangladesh for the Last 40 Years, American Journal of Applied Mathematics. Vol. 4, No. 3, 2016, pp. 158-162. doi: 10.11648/j.ajam.20160403.16
Copyright © 2016 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
McCarthy, J. J., O. Canziani, N. A. Leary, D. J. Dokken, and K. S. White, (2001), “Climate Change 2001: Impacts, Adaptation and Vulnerability”, IPCC Working Group II, Cambridge University Press, Cambridge.
Swart, R., J. Robinson, and S. Cohen, (2003),“Climate Change and Sustainable Development: Expanding the Options”, Climate Policy 3(1), S19-S40
Smit, B., and O. Pilifosova, (2001), “Adaptation to Climate Change in the Context of Sustainable Development and Equity”, Chapter 18 in McCarthy, J. J., O. Canziani, N. A. Leary, D. J. Dokken, and K. S. White, “Climate Change 2001: Impacts, Adaptation, and Vulnerability - Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change”, Cambridge University Press, Cambridge, UK.
Abdullah, H. M. and M. M. Rahman, (2015), “Initiating rain water harvest technology for climate change induced drought resilient agriculture: scopes and challenges in Bangladesh”, Journal of Agriculture and Environment for International Development, Vol. 109, No. 2, P: 189-208.
Endo, N., J. Matsumoto, T. Hayashi, T. Terao, F. Murata, M. Kiguchi, Y. Yamane and M. S. Alam, (2015), “Trends in Precipitation Characteristics in Bangladesh from 1950 to 2008”, SOLA, Vol. 11, P: 113−117.
GOV. UK., (2011), “Climate: Observations, projections and impacts”, In: CENTRE, M. O. H. (ed.). UK.
Smith, J. B., S. H. Schneider, M. Oppenheimer, G. W. Yohe, W. Hare, M. Mastranrea, D. Patwardhan, A. Burton, I. Corfee-Morlot and C. H., MAGADZA, (2009),“Assessing dangerous climate change through an update of the Intergovernmental Panel on Climate Change (IPCC)“reasons for concern”. Proceedings of the National Academy of Sciences, Vol. 106: P. 4133-4137.
Shahid S. and H. Behrawan, (2008), “Drought risk assessment in the western part of Bangladesh”, Natural Hazards, Vol. 46, No. 3: P. 391–413.
Shahid S. (2008), “Spatial and temporal characteristics of droughts in the western part of Bangladesh”, Hydrological Processes, Vol. 22, No. 13: P. 2235–2247.
Hasan, Z., S. Akter and M. Islam, (2014), “Climate Change and Trend of Rainfall in the South-East Part of Coastal Bangladesh”, European scientific Journal, Vol. 10, No 2: P. 25-39.
Devkota, L. P., (2006), “Rainfall over SAARC region with special focus on tele-connections and long range forecasting of Bangladesh monsoon rainfall, monsoon forecasting with a limited area numerical weather prediction system”, Report No-19, Published by SAARC Meteorological Research Centre (SMRC), Dhaka, Bangladesh.
Ahasan, M. N., M. A. M. Chowdhury, and D. A. Quadir, (2008), “Few aspects of the flood disaster caused by heavy rainfall over Bangladesh”, Proceedings of SAARC Seminar on Application of Weather and Climate Forecasts in the Socio-economic Development and Disaster Mitigation, P.79-94.
McLach lan, G. J. and T. Krishnan, (1997), “The EM Algorithm and Extensions”, Wiley, New York City, New York.
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
Tel: (001)347-983-5186