Clinical Medicine Research

| Peer-Reviewed |

Selected Pharmacological Applications of 1st Row Transition Metal Complexes: A review

Received: 01 August 2017    Accepted: 07 August 2017    Published: 27 November 2017
Views:       Downloads:

Share This Article

Abstract

Ninety elements occur naturally on earth. Out of these, nine are radioactive and among the remaining eighty one that could support life, sixty one are metals. Our bodies have approximately 3% metal. Researchers have been established that some of metal complexes were biologically active. A significantly rising interest in the design of metal complexes as drugs and diagnostic agents is currently observed in the area of scientific inquiry, specifically termed medicinal inorganic chemistry. Investigations in this area focus mostly on the speciation of metal species in biological media based on possible interactions of these metal ions with diverse biomolecules. In an effort to contribute to future development of new therapeutics or diagnostic agents metallo pharmaceuticals used as anticancer agents, anti-HIV, metal-mediated antibiotics, antibacterials, antivirals, antiparasitics, antiarthritics, antidiabetics and radio-sensitizing agents appear in therapeutic medicinal inorganic chemistry. The medicinal uses and applications of metals and metal complexes are of increasing clinical and commercial importance.

DOI 10.11648/j.cmr.20170606.13
Published in Clinical Medicine Research (Volume 6, Issue 6, November 2017)
Page(s) 177-191
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2024. Published by Science Publishing Group

Keywords

Transition Metal Complexes, Antibacterial Activity, Antifungal Activity, Cytotoxicity, DNA-Interaction

References
[1] Thompson KH (2011) Encyclopedia of Inorganic Chemistry. In: King RB (ed.), John Wiley & Sons Ltd., Chichester, UK.
[2] Magner LN (2005) A History of Medicine (2nd edn.), Taylor & Francis Group, LLC: Boca Raton, FL, USA.
[3] Orvig C, Abrams MJ. (1999) Medicinal inorganic chemistry: introduction. Chem Rev, 99: 2201-2204.
[4] Thompson KH, Orvig C (2006) Concepts and Models in Bioinorganic Chemistry. In: Kraatz HB, Metzler-Nolte N (eds.), Wiley-VCH: Weinheim, Germany, p: 25.
[5] Thompson KH, Orvig C, (2003) Boon and bane of metal ions in medicine. Science. 300:936-939.
[6] Natarajan Raman, Sivasangu Sobha, Liviu Mitu. (2012) Synthesis, structure elucidation, DNA interaction, biological evaluation, and molecular docking of an isatin-derived tyramine bidentate Schiff base and its metal complexes. Springer, Monatsh Chem. 143: 1019–1030
[7] S. Padhye, A. Zahra, S. Ekk et al. (2005) Synthesis and characterization of copper(II) complexes of 4-alkyl/aryl- 1,2-naphthoquinones thiosemicarbazones derivatives as potent DNA cleaving agents. Inorganica Chimica Acta, 358(6): 2023–2030.
[8] Nubia Boechat, Warner B. Kover, Monica M. Bastos, Nelilma C. Romeiro. (2007) Design, synthesis, and biological evaluation of new 3-hydroxy-2-oxo-3-trifluoromethylindole as potential HIV-1 reverse transcriptase inhibitors. Med Chem Res. 15: 492–510.
[9] Md. Saddam Hossain, C. M. Zakaria, M. M. Haque, and Md. Kudrat-E- Zahan, (2016) Spectral and Thermal Characterization with Antimicrobial Activity on Cr(III) and Sn(II) Complexes containing N, O Donor Novel Schiff Base Ligand. International Journal of Chemical Studies. 4(6):08-11.
[10] Naik AD, Annigeri SM, Gangadharmath UB, Revankar VK, Mahale VB, et al. (2002) Anchoring mercapto-triazoles on dicarbonyl backbone to assemble novel binucleating, acyclic SNONS compartmental ligands. Indian J Chem. 41A: 2046-2053.
[11] K. G. O. Casas, M. L. G. Oliveira, G. D. de Fátima Silva, C. J. Viasus and A. E. Burgos. (2015) Synthesis of Cu(II) complex with schiff bases derived from aryl-S-benzyildithiocarbazate: Antimicrobial activity and in silico biological properties evaluations. African Journal of Pharmacy and Pharmacology. 9(42):1009-1019.
[12] M. Emayavaramban, K. Kumar, P. Mani, B. Prabhakaran, and A. Muthuvel. (2014) Synthesis, complexation, spectral and antimicrobial study of some novel 5-bromofluorobenzaldehydeoxime and semicarbazone under ultrasonic irradiation. International Journal of Advanced Chemistry. 2(1): 20-23.
[13] Salman A. Khan, Abdullah M. Asiri, Khalid Al-Amry, and Maqsood Ahmad Malik. (2014) Synthesis, Characterization, Electrochemical Studies, and In Vitro Antibacterial Activity of Novel Thiosemicarbazone and Its Cu(II), Ni(II), and Co(II) Complexes. Hindawi Publishing Corporation Scientific World Journal, Article ID 592375, 9 pages.
[14] Mohammed Fakruddin Al iAhmed and V. Mahammad Yunus. (2014) Microwave Synthesis & Antimicrobial Activity of Some Cu(II), Co(II), Ni(II) & Cr(III) complexes with Schiff base 2,6-pyridinedicarboxaldehyde Thiosemicabazone. Oriental Journal Of Chemistry (An International Open Free Access, Peer Reviewed Research Journal). 30(1):111-117.
[15] Gajendra Kumari, Dharmendra Kumar, C. P. Singh, Amit Kumar and V. B. Rana. (2010) Synthesis, characterization & antimicrobial activity of Trivalent metal Schiff base complexes. Journal of Serbian Chemical Society, J. Serb. Chem. Soc. 75 (5): 629–637.
[16] S. M. S. Shariar, M. Jesmin, M. M. Ali. (2014) Antibacterial Activities of Some Schiff Bases Involving Thiosemicarbazide and Ketones, International Letters of Chemistry, Physics and Astronomy. 7: 53-61.
[17] D. Nasrin, M. Ashraful Alam, M. Nazmul Hossain and M. Nazimuddin, (2013) Synthesis, Characterisation & antimicrobial activity of Schiff Base metal complexes derived from S-benzyldithiocarbazate with 2-hydroxyacetophenone. Chemistry Journal. 3(1):13-19.
[18] Elena Pahontu, Felicia Julea, Tudor Rosu, Victor Purcarea, Yurie Chumakov, Petru Petrenco, Aurelian Gulea. (2015) Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones. Willey, J. Cell. Mol. Med. 19(4): 865-878.
[19] Pandeya, S. N., D. Sriram, G. Nath and Declercq. (1999) Synthesis antibacterial antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4'-chlorophenyl)thiazol-2- yl]thiosemicarbazide. Eur. J. Pharmacol. E. Eur. J. Pharmacol. 9: 25-31.
[20] Yidliz. M, Dulger. B, Yancu. S. Y. K, and Yanpici, B. M. (2004) Synthesis and antimicrobial activity of bis (imido) Schiff bases derived from thiosemicarbazide with some 2-hydroxyaldehydes and metal complexes. J. Ind. Chem. Soc. 81:7-12.
[21] Prasad. S, Agarwal. R. K. (2007) Cobalt (II) complexes of various thiosemicarbazones of 4-aminoantipyrine: Synthesis spectral thermal and antimicrobial studies. Transit Met Chem. 32: 143-9.
[22] Parekh. A. K. and Desai. K. K. (2006)Synthesis and antibacterial activity of thiosemicarbazones’ Indian J. Chem. 45;: 1072.
[23] Murthy. N. (2002) Synthesis, characterization and biological activity of copper (II) complexes with phenylglyoxal bis-(thiosemicarbazones). Asian J. Chem. 14(3-4):1325-1330.
[24] Ferrari. M. B, Capacchi. S, Reffo G, Aelosi G., Tarasconi P, Albertini R., Pinellis S, Lunghi p. (2005) Synthesis, structural characterization and biological activity of P-fluorobenzaldehyde thiosemicarbazones and of a nickel complexes. J. of Inorg. Biochem. 81: 89.
[25] . Pedrares AS, Romero J, Vazquez JAG, Duran ML, Casanova I, et al. (2003) Electrochemical synthesis and structural characterisation of zinc, cadmium and mercury complexes of heterocyclic bidentate ligands (N, S). Dalton Trans. 7:1379-1388.
[26] El-Asmy AA, Khalifa ME, Hassanian MM. (2004) Synthesis and characterization of transition metal complexes containing oxime, amido and thioamido groups. Indian J Chem. 43A: 92-97.
[27] Ekegren JK, Roth P, Källström K, Tarnai T, Andersson PG. (2003) Synthesis and evaluation of N, S-compounds as chiral ligands for transfer hydrogenation of acetophenone. Org Biomol Chem. 1: 358-366.
[28] Elena Pahontu, Felicia Julea, Tudor Rosu, Victor Purcarea, Yurie Chumakov, Petru Petrenco, Aurelian Gulea. (2015) Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones. Willey, J. Cell. Mol. Med. 19(4): 865-878.
[29] D. Nasrin, M. Ashraful Alam, M. Nazmul Hossain and M. Nazimuddin, (2013) Synthesis, Characterisation & antimicrobial activity of Schiff Base metal complexes derived from S-benzyldithiocarbazate with 2-hydroxyacetophenone. Chemistry Journal. 3(1):13-19.
[30] S. M. S. Shariar, M. Jesmin, M. M. Ali. (2014) Antibacterial Activities of Some Schiff Bases Involving Thiosemicarbazide and Ketones. International Letters of Chemistry, Physics and Astronomy. 7: 53-61.
[31] Pandeya, S. N., D. Sriram, G. Nath and Declercq. (1999) Synthesis antibacterial antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4-(4'-chlorophenyl)thiazol-2- yl]thiosemicarbazide. E. Eur. J. Pharmacol. 9: 25-31.
[32] Zeglis BM, Pierre VC, Barton JK (2007) Metallo-intercalators and metalloinsertors. Chem Commun (Camb), pp: 4565-4579.
[33] Farrell N Comprehensive Coordination Chemistry II. In: McCleverty JA, Meyer TJ (eds.), 2003, Pergamon, Oxford, p: 809.
[34] Erkkila KE, Odom DT, Barton JK. (1999) Recognition and reaction of metallointercalators with DNA. Chem Rev 99: 2777-2796.
[35] M. Emayavaramban, K. Kumar, P. Mani, B. Prabhakaran, and A. Muthuvel. (2014) Synthesis, complexation, spectral and antimicrobial study of some novel 5-bromofluorobenzaldehydeoxime and semicarbazone under ultrasonic irradiation. International Journal of Advanced Chemistry. 2(1): 20-23.
[36] Busto N, Valladolid J, Aliende C, Jalón FA, Manzano BR, et al. (2012) Preparation of organometallic ruthenium-arene-diaminotriazine complexes as binding agents to DNA. Chem Asian J. 7: 788-801.
[37] Ang WH, Dyson PJ (2006) Classical and Non-Classical Ruthenium-Based Anticancer Drugs: Towards Targeted Chemotherapy. Eur J Inorg Chem. 2006: 4003-4018.
[38] Hannon MJ (2007) Metal-based anticancer drugs: From a past anchored in platinum chemistry to a post-genomic future of diverse chemistry and biology. Pure Appl Chem. 79: 2243-2261.
[39] Mejía Vázquez DMDC, Navarro S New Approaches in the Treatment of Cancer. Nova Science Publishers, New York, (2010) USA.
[40] Ramadan AEMM. (2012) Macrocyclic nickel (II) complexes: Synthesis, characterization, superoxide scavenging activity and DNA-binding. Journal of Molecular Structure. 1015: 56-66.
[41] Pothiraj K, Baskaran T, Raman N. (2012) DNA interaction studies of d9 and d10 metal complexes having Schiff base and polypyridyl ligands. J Coord Chem. 65: 2110-2126.
[42] Rajendiran V, Karthik R, Palaniandavar M, Stoeckli-Evans H, Periasamy VS, et al. (2007) Mixed-ligand copper(II)-phenolate complexes: effect of coligand on enhanced DNA and protein binding, DNA cleavage, and anticancer activity. Inorg Chem. 46: 8208-8221.
[43] Williams RJP, Frausto da Silva JJR (1997) The Natural Selection of the Chemical Elements, Clarendon Press, Oxford.
[44] Fraústo da Silva JJR, Williams RJP The Biological Chemistry of the Elements (2nd edn.), (2001) Oxford University Press, Oxford.
[45] Siegel A, Siegel H, Siegel RKO (2007) Nickel and its Surprising Impact in Nature. Wiley, New York, USA.
[46] Kaim W, Rall J Copper-A (1996) “Modern” Bioelement. Angew Chem Int Ed. 35: 43-60.
[47] Jaouen G (2006) Bioorganometallics: Biomolecules, Labeling, Medicine. Wiley- VCH, Weinheim.
[48] Lippard SJ, Berg JM (1994) Principles of Bioinorganic Chemistry, University Science Books, Mill Valley (California).
[49] Holder AA Inorganic pharmaceuticals. Annu Rep Prog Chem, Sect A: Inorg Chem. 108; 2012: 350-368.
[50] Ronconi L, Sadler PJ Using coordination chemistry to design new medicines. Coord Chem Rev 251, 2007: 1633-1648.
[51] Schwietert CW, McCue JP Coordination compounds in medicinal chemistry. Coord Chem Rev 184, 1999: 67-89.
[52] Kraatz HB, Metzler-Nolte N (2006) Concepts and Models in Bioinorganic Chemistry. Wiley-VCH: Weinheim, Germany.
[53] Jones CJ, Thornback JR (2007) Medicinal Applications of Coordination Chemistry. Royal Society of Chemistry: Cambridge, UK.
[54] Alessio E (2011) Bioinorganic Medicinal Chemistry (1st edn.), Wiley-VCH: Weinheim, Germany.
[55] Dabrowiak JC (2009) Metals in Medicine. John Wiley & Sons Ltd., Chichester, UK.
[56] Farrell NP (1999) Uses of Inorganic Chemistry in Medicine (1st edn.), Royal Society of Chemistry, Cambridge, UK.
[57] Gielen M, Tiekink ERT (2005) Metallotherapeutic Drugs and Metal-Based Diagnostic Agents: The Use of Metals in Medicine (1st edn.), John Wiley & Sons Ltd.: Chichester, UK.
[58] Gaynor D, Griffith DM. (2012) The prevalence of metal-based drugs as therapeutic or diagnostic agents: beyond platinum. Dalton Trans, 41: 13239-13257.
[59] Casini A. (2012) Exploring the mechanisms of metal-based pharmacological agents via an integrated approach. J Inorg Biochem 109: 97-106.
[60] Z, Sadler PJ. (1999) Metals in Medicine. Angew Chem Int Ed 38: 1512-1531.
[61] Sun RWY, Che CM. (2009) The anti-cancer properties of gold (III) compounds with dianionic porphyrin and tetradentate ligands. Coord Chem Rev. 253: 1682.
[62] B. Lakshmi, K. N. Shivananda, Gouda Avaji Prakash, Krishna Reddy K. Rama, and K. N. Mahendra. (2011) Synthesis of Co(II), Ni(II) and Cu(II) Complexes from Schiff base Ligand and Reactivity Studies with Thermosetting Epoxy Resin. Bull. Korean Chem. Soc. 32(5):1613.
[63] Spinu C, Kriza A. (2000) Co (II), Ni (II) and Cu (II) complexes of bidentate Schiff bases. Acta Chem Slov 47: 179-186.
[64] Jayamani A, Thamilarasan V, Sengottuvelan N, Manisankar P, Kang SK, et al. (2014) Synthesis of mononuclear copper(II) complexes of acyclic Schiff’s base ligands: spectral, structural, electrochemical, antibacterial, DNA binding and cleavage activity. Spectrochim Acta A Mol Biomol Spectrosc. 122: 365-374.
[65] Md. Saddam Hossain, C. M. Zakaria, M. M. Haque, Md. Kudrat-E-Zahan, “Synthesis, Spectral and thermal characterization with antimicrobial studies on Mn(II) and Co(II) complexes of ONS containing Novel Schiff base ligand derived from phthalimide and thiourea” Available online at www.icemme.com, Proceedings of the 1st International Conference on Engineering Materials and Metallurgical Engineering 22- 24 December, 2016, BCSIR, Dhaka, Bangladesh.
[66] E. Ramachandran, P. Kalaivani, R. Prabhakaran et al. (2012) Synthesis, X-ray crystal structure, DNA binding, antioxidant and cytotoxicity studies of Ni(II) and Pd(II) thiosemicarbazon complexes. Metallomics, 4(2): 218–227.
[67] Md. Shiraj-U-Ddaula, Md. Anarul Islam, Shejutyaktar, Md. Khairul Islam, Md. Abdul Alim Al-Bari, Md. MasuqulHaque and Md. Kudrat-E-Zahan, (2014) Synthesis, Characterization and Antimicrobial Activity of Cd(II), Ni(II), Co(II) and Zr(IV) Metal Complexes of Schiff Base Ligand Derived from Diethylenetriamine and Isatin. Asian J. Research Chem. 7(7): 619-621.
[68] Rakesh Chandra Ray, Md. Kudrat-E-Zahan, M. M. Haque, Md. Abdul Alim and et al. (2015) Synthesis, characterization and antimicrobial activity of Co(II), Cu(II), and Mn(II) metal complexes of Schiff base ligand derived from cinnamaldehyde and ethylenediamine. Int. J. Chem. Studies, 3(2): 17-19.
[69] Md. Saddam Hossain, C. M. Zakaria, Md. Kudrat-E-Zahan, (2017) “Synthesis, Spectral and Thermal Characterization of Cu(II) Complexes with Two New Schiff Base Ligand towards Potential Biological Application” Der Chemica Sinica, 8(3): 380-392
[70] Tan XJ, Liu HZ, Ye CZ, Lou JF, Liu Y, et al. (2014) Synthesis, characterization and in vitro cytotoxic properties of new silver (I) complexes of two novel Schiff bases derived from thiazole and pyrazine. Polyhedron. 71: 119-132.
[71] Parveen S, Arjmand F, Ahmad I. (2014) Enantiomeric in vitro DNA binding, pBR322 DNA cleavage and molecular docking studies of chiral L- and D-ternary copper(II) complexes of histidine and picolinic acid. J Photochem Photobiol. 130: 170-178.
[72] Gwaram NS, Ali HM, Khaledi H, Abdulla MA, Hadi AH, et al. (2012) Antibacterial evaluation of some Schiff bases derived from 2-acetylpyridine and their metal complexes. Molecules 17: 5952-5971.
[73] Tisato F, Refosco F, Bandoli G. (1994) Structural survey of technetium complexes. Coord Chem Rev. 135: 325-397.
[74] Vinayak S. Sonnekar, Wamanrao N. Jadhav, Satish A. Dake, Swapanil G. Dhole, Shankar S. Narwade and Rajendra P. Pawar., (2014) Eur. Chem. Bull. 3(8):792-797.
[75] B. Spillane, M. N. F. Dabo, N. C. F. Fletcher, J. L. Morgan, R. Keen, I. Haq and N. J. Buurma, (2008) Journal of Biological Inorganic Chemistry, 102 (4): 673.
[76] Peter A. Ajibade and Nonkululeko H. Zulu.(2011) Int. J. Mol. Sci. 12: 7186-7198.
[77] Muna S. Al-Rawi, Jumbad H. Tomma, Abdul-Jabber A. Mukhlus, Ammar H. Al-Dujaili., American Journal of Organic Chemistry. 3(1), 2013: 1-8.
[78] Kossakowski J, Struga M, (2006) "Synthesis of thiourea derivatives of 1H-isoindole-1,3(2H)-dione as potential antiviral agents", Springer, 111(15): 187-192.
[79] Campo, R.; Criado, J. J.; Garcia, E.; Hermosa, M. R.; Jimenez-Sanchez, A.; Manzano, J. L. E.; Monte, E.; Rodriguez-Fernandez, E.; Sanz, F., J. Inorg. Biochem. 89, 2002:74–82.
[80] Dhar DN, Taploo CL. (1982) Schiff bases and their application. JSci Ind Res., 41(8):501-6.
[81] Omar H. Al-Obaidi. (2012) Journal of Applicable Chemistry, 1 (3): 352-359.
[82] Mohammad Akbar Ali, Ai Ling Tan, Aminul Huq Mirza, Jose H. Santos, Aimi Hanisah Bte Hj Abdullah. (2012), Springer, Transition Met Chem. 37;:651–659.
[83] Urbain C. Kasséhin, Fernand A. Gbaguidi, Christopher R. McCurdy and Jacques H. Poupaert. (2015) Journal of Chemical and Pharmaceutical Research, 7(7):48-55.
[84] S. Rathakrishnanb, A. Abdul Jameela & M. Syed Ali Padusha., International Journal of Scientific and Research Publications, 2014, 4: 7.
[85] Salman A. Khan, AbdullahM. Asiri, Khalid Al-Amry, and Maqsood AhmadMalik.., Hindawi publications, Scientific World Journal., Volume 2014, Article ID 592375, 9 pages.
[86] Sarich AI (1956) Vest Mosk Univ 11: 225.
[87] Bell SC, Conklin GL, Childress SJ. (1963) The separation of ketimine isomers. J Am Chem Soc. 85: 2868-2869.
[88] A. A. El-Asmy and G. A. A. Al-Hazmi. (2009) Synthesis and spectral feature of benzophenone-substituted thiosemicarbazones and their Ni(II) and Cu(II) complexes. Spectrochimica Acta A, 71(5): 1885–1890.
[89] Tabassum S, Zaki M, Arjmand F, Ahmad I. Synthesis of heterobimetallic complexes: In vitro DNA binding, cleavage and antimicrobial studies. J Photochem Photobiol B. 114: 108-118
[90] T. A. Yousef, G. M. Abu El-Reash, O. A. El-Gammal, and R. A. Bedier, (2012) Co(II), Cu(II), Cd(II), Fe(III) and U(VI) complexes containing a NSNO donor ligand: synthesis, characterization, optical band gap, in vitro antimicrobial and DNA cleavage studies. Journal of Molecular Structure, 1029(12): 149–159.
[91] W. Liu, X. Li, Z. Li, M. Zhang, and M. Song. (2007) Voltammetric metal cation sensors based on ferrocenyl thiosemicarbazone. Inorganic Chemistry Communications. 10(12):1485–1488.
[92] S.-M. Ying, (2012). Synthesis, crystal structure and nonlinear optical property of a Zinc(II) complex base on the reduced Schiff-base ligand. Inorganic Chemistry Communications, 22:82-84.
[93] C. Agatha Christiea, C. Shijub and T. F. Abbs Fen Rejia. (2016) Synthesis, spectroscopic characterization and biological activities of Co(ii), Ni(ii), Cu(ii) and Zn(ii) complexes of schiff base derived from isatin monohydrazone and furfuraldehyde” ejpmr, 3(20): 238-244.
[94] Sridhar, S. K.; Pandeya, S. N.; Stables, J. P. and Ramesh, A. Eur. J. Pharm. Sci. 16, 2002: 129.
[95] Penthala, N. R.; Yerramreddy, T. R.; Madadi, N. R. and Crooks, P. A. Bioorg. Med. Chem. Lett., 20(15), 2010: 4468.
[96] Pandeya, S. N.; Smitha, S.; Jyoti, M. and Sridhar, S. K Acta Pharm. 55, 2005: 27.
[97] Chiyanzu, I.; Hansell, E. and Gut, J. Bioorg. Med. Chem. Lett. 13, 2003: 3527.
[98] Chohan, Z. H., Pervez, H. and Rauf, A. J. Enz. Inhib. Med. Chem., 19, 2004: 417.
[99] Garima Vatsa, O. P. Pandey and S. K. Sengupta. Synthesis, Spectroscopic and Toxicity Studies of Titanocene Chelates of Isatin-3- Thiosemicarbazones. 3; 2005: 3-4,
[100] Ahmed M. Naglah, Hassan M. Awad and et al. Microwave-Assisted Synthesis and Antimicrobial.
[101] Activity of Some Novel Isatin Schiff Bases Linked to Nicotinic Acid via Certain Amino Acid Bridge. Hindawi Publishing Corporation Journal of Chemistry. Volume 2015, Article ID 364841, 8 pages.
[102] S. N. Pandeya, S. Smitha, M. Jyoti, and S. K. Sridhar. (2005) Biological activities of isatin and its derivatives. Acta Pharmaceutica. 55(1): 27–46.
[103] W. Chu, J. Zhang, C. Zeng et al. (2005) “N-benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: synthesis, in vitro activity, and molecular modeling studies. Journal of Medicinal Chemistry. 48(24): 7637–7647.
[104] W. Chu, J. Rothfuss, Y. Chu, D. Zhou, and R. H. Mach. (2009) Synthesis and in vitro evaluation of sulfonamide isatin Michael acceptors as small molecule inhibitors of caspase-6. Journal of Medicinal Chemistry. 52(8): 2188–2191.
[105] Z. H. Chohan, H. Pervez, A. Rauf, K. M. Khan, and C. T. Supuran. (2004) Isatin-derived antibacterial and antifungal compounds and their transition metal complexes. Journal of Enzyme Inhibition and Medicinal Chemistry. 19(5): 417–423.
[106] B. R. Nathani, K. S. Pandya, M. M. Jeni, and M. R. Patel. (2011) Synthesis and antimicrobial activity of some new isatins derivatives. Der Pharma Chemica. 3(4): 367–372.
[107] T. Aboul-Fadl, H. A. Abdel-Aziz, M. K. Abdel-Hamid, T. Elsaman, J. Thanassi, and M. J. Pucci, (2011) “Schiff bases of indoline- 2,3-dione: potential novel inhibitors of mycobacterium tuberculosis (Mtb) DNA gyrase. Molecules, 16(9): 7864–7879.
[108] Ahlam J. Abdul-Ghani and Asmaa M. N. Khaleel. (2009) Synthesis and Characterization of New Schiff Bases derived from N (1)-Substituted Isatin with Dithiooxamide and Their Co(II), Ni(II), Cu(II), Pd(II), and Pt(IV) Complexes. Hindawi Publishing Corporation Bioinorganic Chemistry and Applications. Article ID 413175, 12 pages.
[109] G. Cerhiaro and A. M. D. Ferreira. (2006) Oxindoles and copper complexes with oxindole-derivativesas potential pharmacological agents. Journal of the Brazilian Chemical Society. 17(8): 1473–1485.
[110] V. K. Sharma, S. Srivastava, and A. Srivastava. (2006) Novel coordination complexes of the trivalent ruthenium, rhodium and iridium with hydrazones derived from isatin hydrazide and various aldehydes with spectral and biological characterization. Polish Journal of Chemistry. 80: 387–396.
[111] R. M. Abdel Rahman, Z. El Gendy, and M. B. Mahmoud, (1990) “Synthesis of some new 3-substituted 1,2,4-triazino-indole derivatives and related compounds of potential antifungal activity,” Indian Journal of Chemistry. 29: 352–358.
[112] S. N. Pandeya, A. S. Raja, and J. P. Stables. (2002) Synthesis of isatin semicarbazones as novel anticonvulsants-role of hydrogen bonding. Journal of Pharmacy and Pharmaceutical Sciences. 5(3): 266–271.
[113] T. R. Bal, B. Anand, P. Yogeeswari, and D. Sriram. (2005) Synthesis and evaluation of anti-HIV activity of isatin β- thiosemicarbazone derivatives. Bioorganic and Medicinal Chemistry Letters. 15(20): 4451–4455.
[114] N. M. A. Al-Abidy. Synthesis, characterization and study of the biological activity of new Mannich- Schiff bases and some metal complexes derived from isatin, 3-amino-1,2,4-triazol and dithiooxamide. Ph. D. thesis, University of Baghdad, Baghdad, Iraq, 2006.
[115] Ahlam J. Abdulghani and Nada M. Abbas. (2011) Synthesis Characterization and Biological Activity Study of New Schiff and Mannich Bases and Some Metal Complexes Derived from Isatin and Dithiooxamide. Hindawi Publishing Corporation Bioinorganic Chemistry and Applications, Article ID 706262, 15 pages.
[116] S. N. Pandeya, D. Sriram, G. Nath, and E. De Clercq. (1999) Synthesis and antimicrobial activity of Schiff and Mannich bases of isatin and its derivatives with pyrimidine. Farmaco. 54, (9): 624–628.
[117] D. Maysinger, M. Movrin, and M. M. Saric. Structural analogues of isatin and their antimicrobial activity. Pharmazie, 35(1); 1980: 14–16.
[118] Ayman El-Faham, Wael N. Hozzein, Mohammad A. M. Wadaan and et al. Microwave Synthesis, Characterization, and Antimicrobial Activity of Some Novel Isatin Derivative. Hindawi Publishing Corporation Journal of Chemistry. Volume 2015, Article ID 716987, 8 pages.
[119] M. C. Pirrung, S. V. Pansare, K. Das Sarma, K. A. Keith, and E. R. Kern. (2005) Combinatorial optimization of isatin-𝛽-thiosemicarbazones as anti-poxvirus agents. Journal of Medicinal Chemistry. 48(8): 3045–3050.
[120] A. Jarrahpour, D. Khalili, E. De Clercq, C. Salmi, and J. M. Brunel. (2007) Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-Schiff bases of isatin and their derivatives. Molecules, 12(8): 1720–1730.
[121] M. Verma, S. N. Pandeya, K. N. Singh, and J. P. Stables. (2004) Anticonvulsant activity of Schiff bases of isatin derivatives. Acta Pharmaceutica. 54(1): 49–56.
[122] Sonika Jain, Anamika Sharma, Meenakshi Agrawal, Swapnil Sharma, Jaya Dwivedi, and D. Kishore, “Synthesis and Antimicrobial Evaluation of Some Novel Trisubstituted s-Triazine Derivatives Based on Isatinimino, Sulphonamido, and Azacarbazole” Hindawi Publishing Corporation Journal of Chemistry, Volume 2013, Article ID 925439, 9 pages.
[123] G. S. Singh, T. Singh, and R. Lakhan, (1997) “Synthesis, 13C NMR and anticonvulsant activity of new isatin-based spiroazetidinones,” Indian Journal of Chemistry B, 36(10): 951–954.
[124] Ronald Sluyter and Kara L. Vine. (2016) N-Alkyl-Substituted Isatins Enhance P2X7 Receptor-Induced Interleukin-1𝛽 Release from Murine Macrophages. Hindawi Publishing Corporation Mediators of Inflammation, Article ID 2097219, 9 pages.
[125] Ravi Jarapula, Kiran Gangarapu, Sarangapani Manda, and Sriram Rekulapally. (2016) “Synthesis, In Vivo Anti-Inflammatory Activity, and Molecular Docking Studies of New Isatin Derivatives” Hindawi Publishing Corporation International Journal of Medicinal Chemistry, Article ID 2181027, 9 pages.
[126] K. Han, Y. Zhou, F. Liu et al., (2014) “Design, synthesis and in vitro cytotoxicity evaluation of 5-(2-carboxyethenyl) isatin derivatives as anticancer agents,” Bioorganic & Medicinal Chemistry Letters, 24(2): 591–594.
[127] Mohd Abdul Fatah Abdul Manan, M. Ibrahim M. Tahir, Karen A. Crouse, Rozita Rosli, Fiona N.-F. How, David J. Watkin. (2011) The Crystal Structure and Cytotoxicity of Centrosymmetric Copper(II) Complex Derived from S-methyldithiocarbazate with Isatin. Springer, J Chem Crystallogr. 41: 1866–1871.
[128] Patitungkho S, Adsule S, Dandawate P, Padhye S, Ahmad A, Sarkar FH. Bioorg Med Chem Lett 21(6); 2011:1802.
[129] Mohd Abdul Fatah Abdul Manan, Karen A. Crouse, M. Ibrahim M. Tahir, Rozita Rosli, Fiona N.-F. How, David J. Watkin, Alexandra M. Z. Slawin. (2011) Synthesis, Characterization and Cytotoxic Activity of S-Benzyldithiocarbazate Schiff Bases Derived from 5-Fluoroisatin, 5-Chloroisatin, 5-Bromoisatin and Their Crystal Structures. Springer, J Chem Crystallogr. 41: 1630–1641.
[130] G. Valarmathy and R. Subbalakshmi, (2013) Synthesis, Spectral characterization with biological activity studies of some metal complexes derived from 4,6 dimethyl-2-sulphanlmidopyrimidine and 2-Hydroxy-3-methoxy Benzaldehyde, Int J Pharm Bio Sci, 4(3): 287 – 295.
[131] Walcourt. A, Loyevsky M, Lovejoy D. B, Gordeuk V. R, Richardson D, (2004) Novel aroylhydrazone and thiosemicarbazone iron chelators with antimalarial activity against chloroquine resistant and sensitive parasites, International journal of Biochemistry and cell Biology, 36(3):401- 407.
[132] Gomathi. V and Selvameena. R, (2013) Synthesis, characterisation and Biological Studies of complexes of 3D transition metals and with Schiff Base derived from Sulfadiazine and 2- acetylnaphthalene, International Journal of Recent Scientific Research. 4: 94-97.
[133] Shivakumar K, Shashidhar P, Vithalreddy, Halli M B, Synthesis, Spectral Characterisation and biological activity of benzofuran Schiff bases with Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) Complexes, Journal of Coordination Chemistry, 61(14): 2274-2287.
[134] Rajesh D. Hunashal and D. Satyanarayana, (2012) One Pot Synthesis of 3-(substituted phenoxymethyl)-6-phenyl/substituted phenoxymethyl-1,2,4-triazolo[3,4- b][1,3,4]thiadiazole derivatives as Antimicrobial Agents, Int J Pharm Bio Sci, 3(4): 183 – 192.
[135] Tarafder M T H, Ali M A, Wee D J, Azahari K, Silong S, Crowse K A, (2000) Complexes of a tridentate ONS Schiff base –Synthesis & biological properties, Transition metal Chemistry, 25(4):456-460.
[136] Rajendran Jayalakshmi and Rangappan Rajavel. (2015) Synthesis and Characterisation of some novel Schiff base metal complexes: Spectral, XRD, Photoluminescence and Antimicrobial Studies. Chem Sci Rev Lett 4(15): 851-859.
[137] SumanMalik, Suparna Ghosh, Bharti Jain, Archana Singh, and Mamta Bhattacharya, (2013) Synthesis, Characterization, and Biological Evaluation of Some 3d-Metal Complexes of Schiff Base Derived from Xipamide Drug. Hindawi Publishing Corporation International Journal of Inorganic Chemistry Volume, Article ID 549805, 6 pages.
[138] S. Z. Bootwala, (2011) “Synthesis and characterization of binuclear complexes of oxovanadium (IV), oxozirchonium (IV), dioxouranium (VI) and thorium (IV) with N, N-bis [(1E,2E)-2-(hydroxyimino)-1-phenylethylidene] biphenyl-4,4-diamine,”Asian Journal of Chemistry, 23(12): 5466–5470.
[139] M. Revanasiddappa, C. Basavarajja, T. Suresh, and S. D. Angadi, (2009) “Synthetic, spectral and antimicrobial activity studies of first row transition metal complexes derived from lansoprazole drug,” Journal of the Indian Chemical Society, 86: 127–132.
[140] P. Subbaraj, A. Ramu, N. Raman, J. Dharmaraja, (2015) Synthesis, characterization, DNA interaction and pharmacological studies of substituted benzophenone derived Schiff base metal(II) complexes” Journal of Saudi Chemical Society. 19: 207–216.
[141] Chung-Hang Leung, Sheng Lin, Hai-Jing Zhonga and Dik-Lung Ma, (2015) Metal complexes as potential modulators of inflammatory and autoimmune responses. Chem. Sci. 6: 871–884.
[142] Song WJ, Lin QY, Jiang WJ, Du FY, Qi QY, et al. (2015) Synthesis, interaction with DNA and antiproliferative activities of two novel Cu(II) complexes with norcantharidin and benzimidazole derivatives. Spectrochim Acta A Mol Biomol Spectrosc 137: 122-128.
[143] Duskova K, Sierra S, Fernandez MJ, Gude L, Lorente A. (2014) Synthesis and DNA interaction of ethylenediamine platinum(II) complexes linked to DNA intercalants. Bioorg Med Chem 20: 7112-7118.
[144] Pravin N, Raman N (2012) Investigation of in vitro anticancer and DNA strap interactions in live cells using carboplatin type Cu (II) and Zn (II) metalloinsertors. Eur J Med Chem. 85:675-687.
[145] da Silveira VC, Benezra H, Luz JS, Georg RC, Oliveira CC, et al. (2011) Binding of oxindole-Schiff base copper (II) complexes to DNA and its modulation by the ligand. Journal of Inorganic Biochemistry 105: 1692-1703. Kozlyuk N, Lopez T, Roth P, Acquaye JH. Synthesis and the characterization of Schiff-base copper complexes: reactivity with DNA, 4-NPP and BNPP. Inorg Chim Acta 428: 176-184.
[146] Yanga XB, Wanga Q, Huangb Y, Fua PH, Zhangc JS, et al. (2015) Synthesis, DNA interaction and antimicrobial activities of copper (II) complexes with Schiff base ligands derived from kaempferol and polyamines. Inorg Chem Commun 25: 55-59.
[147] Songa WJ, Cheng JP, Jiang DH, Guo L, Cai MF, et al. (2014) Synthesis, interaction with DNA and antiproliferative activities of two novel Cu (II) complexes with Schiff base of benzimidazoles. Spectrochimi Acta Part A 121: 70-76.
[148] Gökçe C, Gup R (2013) Synthesis, characterization and DNA interaction of new copper(II) complexes of Schiff base-aroylhydrazones bearing naphthalene ring. J Photochem Photobiol B 122: 15-23.
[149] Li A, Liu YH, Yuan LZ, Ma ZY, Zhao CL, et al. (2015) Association.
[150] Natarajan Raman, Sivasangu Sobha, Liviu Mitu. (2012) Synthesis, structure elucidation, DNA interaction, biological evaluation, and molecular docking of an isatin-derived tyramine bidentate Schiff base and its metal complexes. Springer, Monatsh Chem. 143: 1019–1030.
[151] Mostafa K. Rabia, Ahmad Desoky M. Mohamad, Nabawia M. Ismail, and Ali Abdo Mahmoud. (2013) Synthesis and Physico-Chemical Properties of Some Ni(II) Complexes with Isatin-Hydrazones. Russian Journal of General Chemistry, 83(12): 2502–2509.
[152] V. Violet Dhayabaran & T. Daniel Prakash & R. Renganathan & Elsa Friehs & Detlef W. Bahnemann, “Novel Bioactive Co(II), Cu(II), Ni(II) and Zn(II) Complexes with Schiff Base Ligand Derived from Histidine and 1,3 Indandione: Synthesis, Structural Elucidation, Biological Investigation and Docking Analysis” Springer, J Fluoresc, DOI 10.1007/s10895-016-1941-x
[153] N. Ramana,, R. Jeyamurugana, B. Rajkapoor and L. Mitu, (2010) Novel, Biologically Imperative, Highly Versatile and Planar Systems: Synthesis, Characterization, Electrochemical Behavior, DNA Binding and Cleavage Properties of Substituted β-Diketimine Copper(II) and Zinc(II) Complexes with Dipyrido(3,2-a:2 3, -c)phenazine Ligand” J. Iran. Chem. Soc. 7(4): 917-933.
[154] Mohan N. Patel & Chintan R. Patel & Hardik N. Joshi, (2013) “Metal-Based Biologically Active Compounds: Synthesis, Characterization, DNA Interaction, Antibacterial, Cytotoxic and SOD Mimic Activities” Appl Biochem Biotechnol. 169:1329–1345.
[155] Xin Li Cai-Feng Bi Yu-Hua Fan, (2014) Synthesis, Crystal Structure and DNA Interaction of a Novel Three-Nuclear Cobalt(II) Complex with Schiff Base Derived from 4-Chloroanthranilic Acid and 2,4-Dihydroxybenzaldehyde. Springer, J Inorg Organomet Polym. 24:582–590.
[156] Yong Li & Zheng-Yin Yang & Ming-Fang Wang, (2010) “Synthesis, Characterization, DNA Binding Properties, Fluorescence Studies and Antioxidant Activity of Transition Metal Complexes with Hesperetin-2-hydroxy Benzoyl Hydrazone” Springer, J Fluoresc. 20:891–905.
[157] Mahadevan S, Palaniandavar M. Spectroscopic and voltammetric studies of copper(II) complexes of bis(pyrid-2-yl)- di/trithia ligands bound to calf thymus DNA. Inorg Chim Acta. 254(2):291–302.
[158] Xu H, Zheng KC, Deng H, Lin LJ, Zhang QL, Ji LN (1997) Effects of the ancillary ligands of polypyridyl ruthenium(II) complexes on the DNA-binding behaviors. New J Chem. 27(8): 1255–1263.
[159] Mozaffar A, Elham S, Bijan R, Leila H. (2004) Thermodynamic and spectroscopic study on the binding of cationic Zn(II) and Co(II) tetrapyridinoporphyrazines to calf thymus DNA: the role of the central metal in binding parameters. New J Chem. 28(10):1227–12s34.
Author Information
  • Department of Chemistry, Rajshahi University, Rajshahi, Bangladesh

  • Department of Chemistry, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh

  • Department of Chemistry, Rajshahi University, Rajshahi, Bangladesh

  • Department of Chemistry, Rajshahi University, Rajshahi, Bangladesh

  • Department of Chemistry, Rajshahi University, Rajshahi, Bangladesh

Cite This Article
  • APA Style

    Md. Saddam Hossain, Pijush Kanti Roy, Roushown Ali, C. M. Zakaria, Md. Kudrat-E-Zahan. (2017). Selected Pharmacological Applications of 1st Row Transition Metal Complexes: A review. Clinical Medicine Research, 6(6), 177-191. https://doi.org/10.11648/j.cmr.20170606.13

    Copy | Download

    ACS Style

    Md. Saddam Hossain; Pijush Kanti Roy; Roushown Ali; C. M. Zakaria; Md. Kudrat-E-Zahan. Selected Pharmacological Applications of 1st Row Transition Metal Complexes: A review. Clin. Med. Res. 2017, 6(6), 177-191. doi: 10.11648/j.cmr.20170606.13

    Copy | Download

    AMA Style

    Md. Saddam Hossain, Pijush Kanti Roy, Roushown Ali, C. M. Zakaria, Md. Kudrat-E-Zahan. Selected Pharmacological Applications of 1st Row Transition Metal Complexes: A review. Clin Med Res. 2017;6(6):177-191. doi: 10.11648/j.cmr.20170606.13

    Copy | Download

  • @article{10.11648/j.cmr.20170606.13,
      author = {Md. Saddam Hossain and Pijush Kanti Roy and Roushown Ali and C. M. Zakaria and Md. Kudrat-E-Zahan},
      title = {Selected Pharmacological Applications of 1st Row Transition Metal Complexes: A review},
      journal = {Clinical Medicine Research},
      volume = {6},
      number = {6},
      pages = {177-191},
      doi = {10.11648/j.cmr.20170606.13},
      url = {https://doi.org/10.11648/j.cmr.20170606.13},
      eprint = {https://download.sciencepg.com/pdf/10.11648.j.cmr.20170606.13},
      abstract = {Ninety elements occur naturally on earth. Out of these, nine are radioactive and among the remaining eighty one that could support life, sixty one are metals. Our bodies have approximately 3% metal. Researchers have been established that some of metal complexes were biologically active. A significantly rising interest in the design of metal complexes as drugs and diagnostic agents is currently observed in the area of scientific inquiry, specifically termed medicinal inorganic chemistry. Investigations in this area focus mostly on the speciation of metal species in biological media based on possible interactions of these metal ions with diverse biomolecules. In an effort to contribute to future development of new therapeutics or diagnostic agents metallo pharmaceuticals used as anticancer agents, anti-HIV, metal-mediated antibiotics, antibacterials, antivirals, antiparasitics, antiarthritics, antidiabetics and radio-sensitizing agents appear in therapeutic medicinal inorganic chemistry. The medicinal uses and applications of metals and metal complexes are of increasing clinical and commercial importance.},
     year = {2017}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Selected Pharmacological Applications of 1st Row Transition Metal Complexes: A review
    AU  - Md. Saddam Hossain
    AU  - Pijush Kanti Roy
    AU  - Roushown Ali
    AU  - C. M. Zakaria
    AU  - Md. Kudrat-E-Zahan
    Y1  - 2017/11/27
    PY  - 2017
    N1  - https://doi.org/10.11648/j.cmr.20170606.13
    DO  - 10.11648/j.cmr.20170606.13
    T2  - Clinical Medicine Research
    JF  - Clinical Medicine Research
    JO  - Clinical Medicine Research
    SP  - 177
    EP  - 191
    PB  - Science Publishing Group
    SN  - 2326-9057
    UR  - https://doi.org/10.11648/j.cmr.20170606.13
    AB  - Ninety elements occur naturally on earth. Out of these, nine are radioactive and among the remaining eighty one that could support life, sixty one are metals. Our bodies have approximately 3% metal. Researchers have been established that some of metal complexes were biologically active. A significantly rising interest in the design of metal complexes as drugs and diagnostic agents is currently observed in the area of scientific inquiry, specifically termed medicinal inorganic chemistry. Investigations in this area focus mostly on the speciation of metal species in biological media based on possible interactions of these metal ions with diverse biomolecules. In an effort to contribute to future development of new therapeutics or diagnostic agents metallo pharmaceuticals used as anticancer agents, anti-HIV, metal-mediated antibiotics, antibacterials, antivirals, antiparasitics, antiarthritics, antidiabetics and radio-sensitizing agents appear in therapeutic medicinal inorganic chemistry. The medicinal uses and applications of metals and metal complexes are of increasing clinical and commercial importance.
    VL  - 6
    IS  - 6
    ER  - 

    Copy | Download

  • Sections