Application of PCR-Based Methods for Rapid Detection of Corn Ingredients in Processed Foods
International Journal of Nutrition and Food Sciences
Volume 3, Issue 3, May 2014, Pages: 199-202
Accepted: Apr. 28, 2014; Published: May 20, 2014
Views 2889      Downloads 171
Authors
Inga Gabriadze, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
Tamara Kutateladze, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
Boris Vishnepolsky, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
Marina Karseladze, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
Nelly Datukishvili, I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia; Faculty of Arts and Sciences, Ilia State University, Tbilisi, Georgia
Article Tools
Follow on us
Abstract
A rapid and accurate detection of corn (Zea mays L.) ingredients in processed foods is important for food safety and quality assurance. This study aimed to develop PCR-based approach for fast screening of the corn in foodstuffs. To this purpose a new PCR-based DNA marker specific to the corn zein gene was developed, three uniplex PCR methods and one triplex PCR system targeting invertase and zein genes were compared. Different corn-derived foodstuffs such as: flour, chips, flakes and snacks were investigated. Analysis of PCR products by agarose gel electrophoresis demonstrated that multiplex PCR method represents the most reliable and rapid tool for identification of corn ingredients in highly processed foods.
Keywords
Corn, Processed Foods, Genomic DNA Extraction, PCR Analysis
To cite this article
Inga Gabriadze, Tamara Kutateladze, Boris Vishnepolsky, Marina Karseladze, Nelly Datukishvili, Application of PCR-Based Methods for Rapid Detection of Corn Ingredients in Processed Foods, International Journal of Nutrition and Food Sciences. Vol. 3, No. 3, 2014, pp. 199-202. doi: 10.11648/j.ijnfs.20140303.21
References
[1]
LJ. Stevens, T. Kuczek, JR. Burgess, E. Hurt, and LE. Arnold, “Dietary sensitivities and ADHD symptoms: thirty-five years of research”, vol. 50, 2011, pp. 279-93.
[2]
JA. Bernstein, II. Bernstein, L. Bucchini, LR. Goldman, RG. Hamilton, S. Lehrer, C. Rubin, and HA. Sampson, “Clinical and laboratory investigation of allergy to genetically modified foods”, Environ Health Perspect., vol. 111, 2003, pp. 114-21.
[3]
C. James, “Global status of com-mercialized biotech/GM crops: 2010”, Briefs of the International Service for the Acquisition of Agri-Biotech Ap-plications (ISAAA), Brief 42, pp. 1-9.
[4]
M. Onishi, T. Matsuoka, T. Kodama, K. Kashiwaba, S. Futo, H. Akiyama, T. Maitani, S. Furui, T. Oguchi, and A. Hino, “Development of a multiplex polymerase chain reaction method for simultaneous detection of eight events of genetically modified maize”, Journal of Agricultural and Food Chemistry, vol.53, 2005, pp. 9713–9721.
[5]
E. Anklam, F. Gadani, P. Heinze, H. Pijnenburg, and G. Van den Eede, “Analytical methods for detection and determination of genetically modified organisms (GMO's) in agricultural crops and plant-derived food products”, European Food Research and Technology, vol. 214, 2002, pp. 3-26.
[6]
D. James, DA-M. Schmidt, E. Wall, M. Green, and S. Masri, “Reliable detection and identification of genetically modified maize, soybean and canola by multiplex PCR analysis”, Journal of Agricultural and Food Chemistry, vol. 51, 2003, pp. 5839-5834.
[7]
B. Ehlers, E. Strauch, M. Goltz, D. Kubsch, H. Wagner, H. Maidhof, J. Bendiek, B. Appel, and H-J. Buhk, “Nachweis gentechnischer Veränderungen in Mais mittels PCR”, Bundesgesundheitsblatt-Gesundheitsforschung - Gesundheitsschutz, vol. 4, 1997, pp. 118-120.
[8]
M. Hernández, T. Esteve, S. Prat, and M. Pla, “Development of real-time PCR systems based on SYBR® Green I, Amplifluor™ and TaqMan® technologies for specific quantitative detection of the transgenic maize event GA21”, Journal of Cereal Science, vol. 39, 2004, pp. 99-107.
[9]
S. Tavoletti, L. Iommarini, and M. Pasquini, “A DNA method for qualitative identification of plant raw materials in feedstuff”, European Food Research and Technology, vol. 229, 2009, pp. 475-484.
[10]
A. Germini, A. Zanetti, C. Salati, S. Rossi, C. Forre, S. Schmid, and R. Marchelli, “Develoment of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods”, Journal of Agricultural and Food Chemistry, vol. 52, 2004, pp. 3275-3280.
[11]
M. C. Samson, M. Gulli, and N. Marmiroli, “Multiple real-time PCR assays for simultaneous detection of maize MON810 and GA21 in food samples”, Food Control, vol. 30, 2013, pp. 518-525 .
[12]
M. Onishi, T. Matsuoka, T. Kodama, K. Kashiwaba, S. Futo, H. Akiyama, T. Maitani, S. Furui, T. Oguchi, and A. Hino, “Development of a multiplex polymerase chain reaction method for simultaneous detection of eight events of genetically modified maize”, Journal of Agricultural and Food Chemistry, vol. 53, 2005, pp. 9713–9721.
[13]
N. Datukishvili, I. Gabriadze, T. Kutateladze, M. Karseladze, and B. Vishnepolsky, “Comparative evaluation of DNA extraction methods for food crops”, International Journal of Food Science and Technology, vol. 45, 2010, pp. 1316-1320.
[14]
P. Taberlet, L. Gielly, G. Pautou, and J. Bouvet, “Universal primers for amplification of three non-coding regions of chloroplast DNA”, Plant Molecular Biology, vol. 17, 1991, pp. 1105-1109.
[15]
K. Pietsch, H. U. Waiblinger, P. Brodmann, and A. Wurz, „Screeningverfahren zur Identi®zierung gentechnisch veraenderter pflanzlicher Lebensmittel'“, Deutsche Lebensmittel-Rundschau, vol. 93, 1997, pp. 35-38.
[16]
T. Kutateladze, I. Gabriadze, B. Vishnepolsky, M. Karseladze, and N. Datukishvili, “Development of triplex PCR for simultaneous detection of maize, wheat and soybean”, Food Control, vol. 34, 2013, pp. 698-702.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186