Proximate, Elemental and Anti-nutrients Composition of Pumpkin Seed (cucurbita maxima duch ex lam) Obtained from Duvu Mubi South Adamawa State, Nigeria
International Journal of Nutrition and Food Sciences
Volume 9, Issue 4, July 2020, Pages: 112-117
Received: Jul. 3, 2020; Accepted: Jul. 15, 2020; Published: Jul. 30, 2020
Views 28      Downloads 18
Authors
Ezekiel Tagwi Williams, Department of Chemistry, Faculty of Science, Adamawa State University, Mubi, Nigeria
Mohammed Abubakar, Department of Chemistry, Faculty of Science, Adamawa State University, Mubi, Nigeria
Nachana’a Timothy, Department of Chemistry, Faculty of Science, Adamawa State University, Mubi, Nigeria
Article Tools
Follow on us
Abstract
In this study the proximate composition, elemental and anti-nutrients composition of pumpkin seed (cucurbita maxima duch ex lam) obtained from Duvu were determined using standard methods. The proximate composition of pumpkin seed showed protein (5.63 ± 0.01%), fats/lipids (2.65± 0.00%), fibre (49.83± 0.01%), ash (2.50± 0.00%), moisture (9.00 ± 0.00%) and carbohydrate (26.46±0.02%) for peels only while protein (35.46 ± 0.01%), fats/lipids (2.20 ± 0.00%), fibre (17.63± 0.01%) ash (4.49± 0.01%), moisture (10.5 ± 0.00%) and carbohydrate (6.08 ± 0.02%) for the unpeeled seeds flour, and protein (33.80 ± 0.01%), fats/lipds (43.15±0.00%), fibre (1.86±0.01%), ash (5.23±0.01%), moisture (10.30 ±0.00%) and carbohydrate (5.65 ±0.03%) for the peeled seed kernel flour. The elemental analysis carried out showed Ca (42.16± 0.01 mg/100 g), Fe (2.72±0.01 mg/100 g), P (124.14 ±0.02mg/100 g), K (177.34 ±0.02mg/100g), Na (41.35 ±0.01mg/100g), Mg (64.84 ±0.02mg/100 g) and Zn (8.42 ±0.01mg/100 g) for the peels only and that of unpeeled seed flour showed Ca (128.67 ±0.02mg/100 g), Fe (10.49 ±0.02mg/100 g), P (875.63 ±0.01mg/100 g), K (511.43 ±0.01mg/100 g), Na (68.26 ±0.02 mg/100 g), Mg (284.54 ±0.01mg/100 g) and Zn (6.44 ±0.02mg/10 g) while Ca (145.30±0.02 mg/100 g), Fe (13.59 ±0.01mg/100 g), P (124.35 ± 0.00 mg/100 g), K (752.64 ±0.02mg/100 g), Na (51.23 ± 0.01mg/100 g), Mg (351.63 ±0.01mg/100 g) and Zn (1.76 ± 0.01mg/100 g) for the peeled seed kernel. The anti-nutrient analysis showed tannin (2.15 ± 0.01%), cyanide (0.026 ± 0.00%), phytate (6.26 ± 0.01%) and oxalate (3.74 ± 0.02%) for the peels only while tannin (3.14 ±0.02%), cyanide (0.062±0.00%), phytate (4.54 ± 0.02%) and oxalate (2.92 ±0.01%) for the unpeeled seed and tannin (0.86 ± 0.01%), phytate (0.86±0.01%) and oxalate (1.96 ± 0.01%) for the peeled seed kernel while cyanide was not detected. The fats, protein and fibre were higher in the sample while moisture, ash and carbohydrate were low. Phosphorus, K and Ca showed higher concentration with Zn been the least in all the samples. Peeled seed kernel showed higher concentration of Ca, Fe, P, K and Mg in all the samples. Unpeeled seed showed higher concentration of phytate than in the peels and peeled seed kernel. The result of this research will be useful in nutritional, pharmaceutical and oil industry.
Keywords
Pumpkin, Determination, Proximate, Elemental, Anti-nutrient, Diet, Pharmaceutical
To cite this article
Ezekiel Tagwi Williams, Mohammed Abubakar, Nachana’a Timothy, Proximate, Elemental and Anti-nutrients Composition of Pumpkin Seed (cucurbita maxima duch ex lam) Obtained from Duvu Mubi South Adamawa State, Nigeria, International Journal of Nutrition and Food Sciences. Vol. 9, No. 4, 2020, pp. 112-117. doi: 10.11648/j.ijnfs.20200904.13
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
References
[1]
C. Hotz and S. R. Gibson. Int. food processing and preparation practice enhance the bioavailability of micronutrients in plant-based diets. J. nutr. 2007, 137 (4); 1097-1100.
[2]
K. Raphael, W. Clive, M. Amos, M. Misheck, N. Clarice, M. Perkins, M. Abigail. Proximate composition of pumpkin gourd (Cucurbitapepo) seeds from Zimbabwe. International Journal of Nutrition and Food Sciences 2014, 3 (4): 279-283.
[3]
O. B. Elmo, N. G. Elmo, O. O. Oladimeji and O. Y. Komolafe. Study on the composition of some nutrient and antinutrient of sheanut (butyrospernumparkii). Nigeria food J. 2002, 20; 6-7.
[4]
E. B. Carbin, B. Larsson and O. Lindahl. Treatment of benign prostatic hyperplasia with phytosterols. Br J. Urol. 1990, 66; 639- 641.
[5]
J. T. Quilly, P. Bazongo, A. B. Adjima, N. Kaboré, A. M. Lykke, A. Ouédraogo, I. H. N. Bassolé 2017. Chemical composition, physicochemical characteristics, and nutritional value of lannea kerstingii seeds and seed oil. Journal of Analytical Methods in Chemistry. 2017, 6.
[6]
M. O. Bello, O. S. Farade, R. S. Adewusi and O. N. Olawore. Studies of some lesser known Nigerian Fruit. African J. of Biotechnology. 2008, 7 (1); 3972-3979.
[7]
O. F. Omoraye and L. Dilworth. Antinutrional factors, zinc, iron and calcium in some cariggean tuber crops and effect of boiling or roasting. Nutrition and Food Sci. 2007, 37 (1); 8-15.
[8]
E. Ryan, K. Galvin, P. T. Oconnor, R. A. Maguire and M. N. O’Brien. Phytosterol, squalene, tocopherol content and fatty acid profile of selected seed, grains and legumes. Plant food Hum Nutr. 2006, 62; 85-91.
[9]
H. R. Glew S. R. Glew, T. L. Chuang, S. Y. Huang, M. Millson, D. Constans and J. D. Vanderjagt. Amino acid, mineral and fatty acid content of pumpkin seed (cucurbita spp). And Cyperus esculentus nuts in the republic og Niger. Plant food hum nutr. 2006, 61; 51-56.
[10]
G. D. Stevenson, J. F. Eller, L. Wang, L. J. Jane, T. Wang and E. G. Inglett. Oil and tocopherol content and composition of pumpkin seed oil in 12 cultivars. J. Agric Food Chem. 2007, 55; 4005-4013.
[11]
T. Sabudak. Fatty acid composition of seed and leaf oils of pumpkin, walnut, almond, maize, sun flower and melon. Chem Nut. Comped. 2007, 43; 465-467.
[12]
M. K. Phillips, M. D. Ruggio and M. Ashraf-Khorassani. Phytosterol composition of nut and seeds commonly consumed in the United States. J. Agric food chem 2005, 53; 9436-9445.
[13]
S. Y. Tsai, C. Y. Tong, T. J. Cheng, H. C. Lee, S. F. Yang and Y. H. Lee. Pumpkin seed oil and phytosterol-F can block testosterone/prazosin-induced prostate growth in rats. Urol Int. 2006, 77; 269-274.
[14]
T. Akbar and B. Magshoud. Tannin and its effect in animal nutrition 2010, pp 113-137.
[15]
S. S. Mohaammed, Y. B. Paiko, A. Mann, M. M. Ndamitso, T. J. Mathew and S. Maaji. Proximate, Mineral and Anti-nutritional Composition of Cucurbita Maxima Fruits Parts. Nigerian Journal of Chemical Research. 2014, 19: 36-49.
[16]
K. Y. Park, S. H. Cha, W. M, Park, H. Y. Kang and M. H. Seog HM. Chemical components in different parts of pumpkin. J. Korean Soc. Food Sci. Nutr. 1997, 26; 639-646.
[17]
W. L. Applequist, B. Avula, B. T. Schaneberg, Y. H. Wang and I. A. Khan. Comparative fatty acid content of seed of four Cucurbita species grown in a common (shared) garden. J. Food Compost Anal. 2006, 19; 606-611.
[18]
G. Gilani, K. Cockell and E. Sepehr. Effect of antinutrional factor on protein digestibility and amino acid availability in food. JOACC int. 2005, 88 (3); 967-987.
[19]
AOAC. Official Methods of Analysis of the Association of Official’s Analytical Chemists, (17th edn.) Arlington, Virginia. 2000, pp. 96-105.
[20]
AOAC. Official methods of analysis of association of analytical chemists. AOAC International, 18th Ed; Horrowitz, W.(ed) vol 1 & 2, AOAC. International Maryland. USA. 2005; 774-784.
[21]
A. E. Oluyeme, A. A Akilua, A. A. Ademuya and B. M. Adebayo. MInerial content of some commonly consumed Nigeria food. Sci. Focus. 2006, 11 (1); 153-157.
[22]
C. G. Ojieh, M. O. Oluba, R. Y. Ogunlowo, E. K. Adebisi, O. G. Eidangbe and T. R. Orole Compositional studies of citrullus lanatus (egusi melon) seed. Int. J. of Nutrition Wellness. 2008, 6 (1); 30-32.
[23]
OA Ojo, BO Ajiboye, AB Ojo, SA Onikanni and OI Olarewajo (2014). Phytochemical, proximate analysis and mineral composition aqueous crude extract of ficus asperifoliamiq. J. of Advancement in Medical and Life Sciences. (1); 1-3.
[24]
N. S. Suzanne. Introduction to chemical analysis of food pursue. University West latatette, Indiana 1st endian reprint 2002, pp 95-109.
[25]
S. R Adwusi, A. J, Udio, B. A, Osuntogun. Studies on the carbohydrate content of bread fruit (Artocarpuscommunis Forst) from South-Western Nigeria. Starch Nutrition 1995, 85; 285-294.
[26]
E. I. Adeyeye E. I. Determination of the chemical composition of the nutritionaly valuable parts of male and female common west Africa fresh water Crab (Sudananoutesafricanus). Int. J of Food Sci, and Nutrition 2002, 53: 189-190.
[27]
V. Arinanthan, V. R. Mohan and A. J. Britto. Chemical composition of certain tribal pulses in south India. Int. J. of Food Sci. and Nutrition 2003, 3; 103-107.
[28]
A. J. W. Payne. Antroduction to animal husbandry in the Trophics. Long man publishers Singapore 1990, pp 92-110.
[29]
V. Hegarity. Decisions in nutrition 5th ed. Time Mirror mostby London 1988, PP 80-132.
[30]
E. T. Williams, N. Timothy and A. Chika. Phytochemical Screening, Elemental and Proximate Analysis of Maerua angolensis (Capparaceaea). Stem Bark International Journal of Biochemistry Research & Review 2019, 27 (4): 1-10.
[31]
A. H. Gutheie. Introductory nutrition (7th ed). Time mirror mosby college publishers. Boston, 1989.
[32]
A. Mc-Donald, A. R. Edwards, D. F. Greenhulgh andA. C. Morgan. Animal nutrition. Prentices Hall, London 1995, PP 101-122.
[33]
M. Ware. Iron: Recommended intake, benefits, and food sources. Everything you need to know about iron. www.Medical newstoday.com/articles/287228.php Fri 23 February 2018.
[34]
M Rossetto, P Vanzani, F Mattivi, M Lunelli, M Scarpa and A Rigo (2002). Synergistic antioxidant effect of catechin and Malvidin 3-glucoside on free radical-initiated per oxidation of linoleic acid in micelles. Archives of biochemistry and biophysics, 408; 239-245.
[35]
U. L. Thompson. Potential health benefit and problems associated with antinutrients in foods. Int. J. of food resources. 1993, 26; 131-149.
[36]
D. Betancur-Ancona, S. Gallegos-Tintore, A. Ddelgado-Herrera, V. Perez-Flores, C. A. Ruelas and L. Chel-Guerrero. Some physicochemical and antinutrional properties of raw flours and protein isolate from mucunapruriens (velvet bean) and canavaliaensiformis (jack bean). Int. J. of food Sci. and Technology. 2008, 43; 816-823.
[37]
G. L. Hassan and J. K. Umar. Proximate and mineral composition of seed and pulp og African locust bean (parkiabiglobosa). Nigerian J. of Basic and Applied Sciences. 2004, 13; 15-27.
[38]
A. C. Atuonwu and E. N. T. Akobundu. Nutrional and sensory quality of cookies suplimented with the defatted pumpkin (cucurbita pepo) seed flour. Pakistan J. of Nutrition 2010, 9 (7); 672-677.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186