Profile of DNA Damage Protective Effect and Antioxidant Activity of Different Solvent Extracts from the Pericarp of Garcinia Mangostana
Journal of Food and Nutrition Sciences
Volume 3, Issue 1-1, February 2015, Pages: 1-6
Received: Jul. 9, 2014; Accepted: Aug. 7, 2014; Published: Aug. 24, 2014
Views 4747      Downloads 254
Authors
Wei Qin Li, College of Food Sciences, Shanxi Normal University, Linfen, China
Jian Guo Xu, College of Food Sciences, Shanxi Normal University, Linfen, China
Article Tools
Follow on us
Abstract
The content of total polyphenols, DNA damage protective effect, and antioxidant activity of different solvent extracts including hexane, acetidin (ethyl acetate), acetone, ethanol, and methanol) from Garcinia mangostana pericarp were investigated and compared. The results showed that the content of total polyphenols is significantly affected by extracting solvents, and resulting in variation of antioxidant activities of Garcinia mangostana pericarp. Methanol, acetone, and ethanol extracts exhibited the better DNA protective effect, the same as that of 100 μM of Trolox. The methanol extract exhibited the strongest antioxidant activities because it possessed the highest total polyphenols content, followed by acetone and ethanol extracts, while other extracts had both lower the content of active compounds and bioactivities. These results indicated that selective extraction from Garcinia mangostana pericarp, by an appropriate solvent, is important for obtaining fractions with high antioxidant activity, which will be useful for the developing and application of mangosteen pericarp as a new local source of bioactive compounds in foods and medicine industries.
Keywords
Garcinia Mangostana Pericarp, Extracts, DNA, Antioxidant Activity
To cite this article
Wei Qin Li, Jian Guo Xu, Profile of DNA Damage Protective Effect and Antioxidant Activity of Different Solvent Extracts from the Pericarp of Garcinia Mangostana, Journal of Food and Nutrition Sciences. Special Issue: Emerging Issues in Food Safety, Food Additives: Risk Assessment, Analytical Methods and Replacement in Foodstuffs. Vol. 3, No. 1-1, 2015, pp. 1-6. doi: 10.11648/j.jfns.s.2015030101.11
References
[1]
Bidchol, A.M., Wilfred, A., Abhijna, P., Harish, R. (2011). Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italic. Food Bioprocess Technol. 4:1137–1143.
[2]
Alexandrova, M. L., Bochev, P. G. (2005). Oxidative stress during the chronic phase after stroke. Free Radical Biol. Med. 39: 297–316.
[3]
Jayaprakasha, G. K., Selvi, T., Sakariah, K. K. (2003). Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 36: 117–122.
[4]
Sokmen, A., Gulluce, M., Akpulat, H. A., Daferera, D., Tepe, B., Polissiou, M., Sokmen, M., Sahin, F. (2004). The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Control. 15: 627–634.
[5]
Shan, B., Cai, Y. Z., Brooks, J. D., Corke, H. (2007). Antibacterial properties and major bioactive components of cinnamon stick (Cinnamomum burmannii): activity against foodborne pathogenic bacteria. J. Agric. Food Chem. 55: 5484–5490.
[6]
Tiwari, B. K., Valdramidis, V. P., Donnel, C. P. O., Muthukumarappan, K., Bourke, P., Cullen, P. J. (2009). Application of natural antimicrobials for food preservation. J. Agric. Food Chem. 57: 5987–6000.
[7]
Delgado-Adámez, J., Fernández-León, M. F., Velardo-Micharet, B., González-Gómez, D. (2012). In vitro assays of the antibacterial and antioxidant activity of aqueous leaf extracts from different Prunus salicina Lindl. cultivars. Food Chem. Toxicol. 50: 2481–2486.
[8]
Voon, H. C., Bhat, R., Gulam, R. (2012). Flower extracts and their essential oils as potential antimicrobial agents. Compr. Rev. Food Sci. F. 11: 34–55.
[9]
Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94: 223–253.
[10]
Rymbai, H., Sharma, R. R., Srivasta, M. (2011). Bio-colorants and its implications in health and food industry–a review. Int. J. Pharma Res. 3: 2228–2244.
[11]
Pedraza-Chaverri, J., Cárdenas-Rodríguez, N., Orozoco- Ibarra, M., Pérez-Rojas, J. M. (2008). Medicinal properties of mangosteen (Garcinia mangostana). Food Chem. Toxicol. 46: 3227–3239.
[12]
Jung, H. A., Su, B. N., Keller, W. J., Mehta, R. G., Kinghorn, D. (2006). Antioxidant xanthones from pericarp of Garcinia mangostana (Mangosteen). J. Agric. Food Chem. 54: 2077–2082.
[13]
Suksamrarn, S., Komutib, O., Ratananukul, P., Chimnol, N., Lartpornmatulee, N., Sukamrarn, A. (2006). Cytotoxic prenylated xanthones from the young fruit of Garcinia mangostana. Chem. Pharm. Bull. 54: 301–305.
[14]
Obolskiy, D., Pischel, I., Siriwatanametanon, N., Heinrich, M. (2009). Garcinia mangostana L.: A phytochemical and pharmacological review. Phytother Res. 23: 1047–1065.
[15]
Mahabusarakam, W., Wiriyachitra, P. (1987). Chemical constituents of Garcinia mangostana. J. Nat. Prod. 50: 474–478.
[16]
Zadernowski, R., Czaplicki, S., Naczk, M. (2009). Phenolic acid profiles of mangosteen fruits (Garcinia mangostana). Food Chem. 112: 685–689.
[17]
Wittenauer, J., Falk, S., Schweiggert-Weisz, U., Carle, R. (2012). Characterisation and quantification of xanthones from the aril and pericarp of mangosteens (Garcinia mangostana L.) and a mangosteen containing functional beverage by HPLC–DAD–MSn. Food Chem. 134: 445–452.
[18]
Jung, H. A., Su, B. N., Keller, W. J., Mehta, R. G., Kinghorn, A. D. (2006). Antioxidant xanthones from the pericarp of Garcinia mangostana (mangosteen). J. Agric. Food Chem. 54: 2077–20852.
[19]
Yu, L., Zhao, M., Yang, B., Zhao, Q., Jiang, Y. (2007). Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chem. 104: 176–181.
[20]
Sakagami, Y., Iinuma, M., Piyasena, K. G. N. P., Dharmaratne, H. R. W. (2005). Antibacterial activity of -mangostin against vancomycin resistant Enterococci (VRE) and synergism with antibiotics. Phytomedicine, 12: 203–208.
[21]
Chomnawang, M. T., Sakagami, S. S., Nukoolkarn, V. S., Gritsanapan, W. (2005). Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria. J. Ethnopharmacol. 101: 330–333.
[22]
Chen, L. G., Yang, L. L., Wang, C. C. (2008). Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem. Toxicol. 46: 688–693.
[23]
Yu, L., Zhao, M., Yang, B., Bai, W. (2009). Immunomodulatory and anticancer activities of phenolics from Garcinia mangostana fruit pericarp. Food Chem. 116: 969–973.
[24]
Cui, J., Hu, W., Cai, Z., Liu, Y., Li, S., Tao, W., Xiang, H. (2010). New medicinal properties of mangostins: Analgesic activity and pharmacological characterization of active ingredients from the fruit hull of Garcinia mangostana L. Pharmacol, Biochem. Be. 95: 166–172.
[25]
Aspé, E., Fernández, K. (2011). The effect of different extraction techniques on extraction yield, total phenolic, and antiradical capacity of extracts from Pinus radiate bark. Ind. Crops Prod. 34: 838–844.
[26]
Cheok, C. Y., Chin, N. L., Yusof, Y. A., Talib, R. A., Law, C. L. (2013). Optimization of total monomeric anthocyanin (TMA) and totalphenolic content (TPC) extractions from mangosteen (Garcinia mangostana Linn.) hull using ultrasonic treatments. Ind. Crops Prod. 50: 1–7.
[27]
Alothman, M., Bhat, R., Karim, A. A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 115: 785–788.
[28]
Cheok, C. Y., Chin, N. L., Yusof, Y. A., Law, C. L. (2012). Extraction of total phenolic content from Garcinia mangostana Linn. hull. I. Effects of solvents and UV–Vis spectrophotometer absorbance method. Food Bioprocess Technol. 5: 2928-2933.
[29]
Rebey, I. B., Bourgou, S., Debez, I. B. S., Karoui, I. J., Sellami, I. H., Msaada, K., Limam, F., Marzouk, B. (2012). Effects of extraction solvents and provenances on phenolic contents and antioxidant activities of cumin (Cuminum cyminum L.) seeds. Food Bioprocess Technol. 5: 2827–2836.
[30]
Xu, J. G., Hu, Q. P., Liu, Y. (2012). Antioxidant and DNA-protective activities of chlorogenic acid isomers. J. Agric. Food Chem. 60: 11625−11630.
[31]
Turkmen, N., Sari, F., Sedat Velioglu, Y. (2006). Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin–Ciocalteu methods. Food Chem. 99: 835–841.
ADDRESS
Science Publishing Group
1 Rockefeller Plaza,
10th and 11th Floors,
New York, NY 10020
U.S.A.
Tel: (001)347-983-5186